994 resultados para Anatomical Therapeutic Chemical
Resumo:
Initial care has been associated with improved survival of community-acquired pneumonia (CAP). We aimed to investigate patient comorbidities and health status measured by the Charlson index and clinical signs at diagnosis associated with adherence to recommended processes of care in CAP. We studied 3844 patients hospitalized with CAP. The evaluated recommendations were antibiotic adherence to Spanish guidelines, first antibiotic dose <6 hours and oxygen assessment. Antibiotic adherence was 72.6%, first dose <6 h was 73.4% and oxygen assessment was 90.2%. Antibiotic adherence was negatively associated with a high Charlson score (Odds ratio [OR], 0.91), confusion (OR, 0.66) and tachycardia ≥100 bpm (OR, 0.77). Delayed first dose was significantly lower in those with tachycardia (OR, 0.75). Initial oxygen assessment was negatively associated with fever (OR, 0.61), whereas tachypnea ≥30 (OR, 1.58), tachycardia (OR, 1.39), age >65 (OR, 1.51) and COPD (OR, 1.80) were protective factors. The combination of antibiotic adherence and timing <6 hours was negatively associated with confusion (OR, 0.69) and a high Charlson score (OR, 0.92) adjusting for severity and hospital effect, whereas age was not an independent factor. Deficient health status and confusion, rather than age, are associated with lower compliance with antibiotic therapy recommendations and timing, thus identifying a subpopulation more prone to receiving lower quality care.
Resumo:
Adhesion to host cells is an initial and important step in Acinetobacter baumannii pathogenesis. However, there is relatively little information on the mechanisms by which A. baumannii binds to and interacts with host cells. Adherence to extracellular matrix proteins, such as fibronectin, affords pathogens with a mechanism to invade epithelial cells. Here, we found that A. baumannii adheres more avidly to immobilized fibronectin than to control protein. Free fibronectin used as a competitor resulted in dose-dependent decreased binding of A. baumannii to fibronectin. Three outer membrane preparations (OMPs) were identified as fibronectin binding proteins (FBPs): OMPA, TonB-dependent copper receptor, and 34 kDa OMP. Moreover, we demonstrated that fibronectin inhibition and neutralization by specific antibody prevented significantly the adhesion of A. baumannii to human lung epithelial cells (A549 cells). Similarly, A. baumannii OMPA neutralization by specific antibody decreased significantly the adhesion of A. baumannii to A549 cells. These data indicate that FBPs are key adhesins that mediate binding of A. baumannii to human lung epithelial cells through interaction with fibronectin on the surface of these host cells.
Resumo:
Cross-reactivity of plant foods is an important phenomenon in allergy, with geographical variations with respect to the number and prevalence of the allergens involved in this process, whose complexity requires detailed studies. We have addressed the role of thaumatin-like proteins (TLPs) in cross-reactivity between fruit and pollen allergies. A representative panel of 16 purified TLPs was printed onto an allergen microarray. The proteins selected belonged to the sources most frequently associated with peach allergy in representative regions of Spain. Sera from two groups of well characterized patients, one with allergy to Rosaceae fruit (FAG) and another against pollens but tolerant to food-plant allergens (PAG), were obtained from seven geographical areas with different environmental pollen profiles. Cross-reactivity between members of this family was demonstrated by inhibition assays. Only 6 out of 16 purified TLPs showed noticeable allergenic activity in the studied populations. Pru p 2.0201, the peach TLP (41%), chestnut TLP (24%) and plane pollen TLP (22%) proved to be allergens of probable relevance to fruit allergy, being mainly associated with pollen sensitization, and strongly linked to specific geographical areas such as Barcelona, Bilbao, the Canary Islands and Madrid. The patients exhibited >50% positive response to Pru p 2.0201 and to chestnut TLP in these specific areas. Therefore, their recognition patterns were associated with the geographical area, suggesting a role for pollen in the sensitization of these allergens. Finally, the co-sensitizations of patients considering pairs of TLP allergens were analyzed by using the co-sensitization graph associated with an allergen microarray immunoassay. Our data indicate that TLPs are significant allergens in plant food allergy and should be considered when diagnosing and treating pollen-food allergy.
Resumo:
Aquaporins (AQPs) are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have been described as suitable candidates for clinical development. Here we report on the potent inhibition of AQP3 channels by gold(III) complexes screened on human red blood cells (hRBC) and AQP3-transfected PC12 cells by a stopped-flow method. Among the various metal compounds tested, Auphen is the most active on AQP3 (IC(50) = 0.8±0.08 µM in hRBC). Interestingly, the compound poorly affects the water permeability of AQP1. The mechanism of gold inhibition is related to the ability of Au(III) to interact with sulphydryls groups of proteins such as the thiolates of cysteine residues. Additional DFT and modeling studies on possible gold compound/AQP adducts provide a tentative description of the system at a molecular level. The mapping of the periplasmic surface of an homology model of human AQP3 evidenced the thiol group of Cys40 as a likely candidate for binding to gold(III) complexes. Moreover, the investigation of non-covalent binding of Au complexes by docking approaches revealed their preferential binding to AQP3 with respect to AQP1. The high selectivity and low concentration dependent inhibitory effect of Auphen (in the nanomolar range) together with its high water solubility makes the compound a suitable drug lead for future in vivo studies. These results may present novel metal-based scaffolds for AQP drug development.
Resumo:
BACKGROUND A recent study using a rat model found significant differences at the time of diabetes onset in the bacterial communities responsible for type 1 diabetes modulation. We hypothesized that type 1 diabetes in humans could also be linked to a specific gut microbiota. Our aim was to quantify and evaluate the difference in the composition of gut microbiota between children with type 1 diabetes and healthy children and to determine the possible relationship of the gut microbiota of children with type 1 diabetes with the glycemic level. METHODS A case-control study was carried out with 16 children with type 1 diabetes and 16 healthy children. The fecal bacteria composition was investigated by polymerase chain reaction-denaturing gradient gel electrophoresis and real-time quantitative polymerase chain reaction. RESULTS The mean similarity index was 47.39% for the healthy children and 37.56% for the children with diabetes, whereas the intergroup similarity index was 26.69%. In the children with diabetes, the bacterial number of Actinobacteria and Firmicutes, and the Firmicutes to Bacteroidetes ratio were all significantly decreased, with the quantity of Bacteroidetes significantly increased with respect to healthy children. At the genus level, we found a significant increase in the number of Clostridium, Bacteroides and Veillonella and a significant decrease in the number of Lactobacillus, Bifidobacterium, Blautia coccoides/Eubacterium rectale group and Prevotella in the children with diabetes. We also found that the number of Bifidobacterium and Lactobacillus, and the Firmicutes to Bacteroidetes ratio correlated negatively and significantly with the plasma glucose level while the quantity of Clostridium correlated positively and significantly with the plasma glucose level in the diabetes group. CONCLUSIONS This is the first study showing that type 1 diabetes is associated with compositional changes in gut microbiota. The significant differences in the number of Bifidobacterium, Lactobacillus and Clostridium and in the Firmicutes to Bacteroidetes ratio observed between the two groups could be related to the glycemic level in the group with diabetes. Moreover, the quantity of bacteria essential to maintain gut integrity was significantly lower in the children with diabetes than the healthy children. These findings could be useful for developing strategies to control the development of type 1 diabetes by modifying the gut microbiota.
Resumo:
Lipid droplets (LDs) are organelles that coordinate lipid storage and mobilization, both processes being especially important in cells specialized in managing fat, the adipocytes. Proteomic analyses of LDs have consistently identified the small GTPase Rab18 as a component of the LD coat. However, the specific contribution of Rab18 to adipocyte function remains to be elucidated. Herein, we have analyzed Rab18 expression, intracellular localization and function in relation to the metabolic status of adipocytes. We show that Rab18 production increases during adipogenic differentiation of 3T3-L1 cells. In addition, our data show that insulin induces, via phosphatidylinositol 3-kinase (PI3K), the recruitment of Rab18 to the surface of LDs. Furthermore, Rab18 overexpression increased basal lipogenesis and Rab18 silencing impaired the lipogenic response to insulin, thereby suggesting that this GTPase promotes fat accumulation in adipocytes. On the other hand, studies of the β-adrenergic receptor agonist isoproterenol confirmed and extended previous evidence for the participation of Rab18 in lipolysis. Together, our data support the view that Rab18 is a common mediator of lipolysis and lipogenesis and suggests that the endoplasmic reticulum (ER) is the link that enables Rab18 action on these two processes. Finally, we describe, for the first time, the presence of Rab18 in human adipose tissue, wherein the expression of this GTPase exhibits sex- and depot-specific differences and is correlated to obesity. Taken together, these findings indicate that Rab18 is involved in insulin-mediated lipogenesis, as well as in β-adrenergic-induced lipolysis, likely facilitating interaction of LDs with ER membranes and the exchange of lipids between these compartments. A role for Rab18 in the regulation of adipocyte biology under both normal and pathological conditions is proposed.
Resumo:
Boletín semanal para profesionales sanitarios de la Secretaría General de Salud Pública y Participación Social de la Consejería de Salud
Resumo:
The discovery in mammalian cells of hundreds of small RNA molecules, called microRNAs, with the potential to modulate the expression of the majority of the protein-coding genes has revolutionized many areas of biomedical research, including the diabetes field. MicroRNAs function as translational repressors and are emerging as key regulators of most, if not all, physiological processes. Moreover, alterations in the level or function of microRNAs are associated with an increasing number of diseases. Here, we describe the mechanisms governing the biogenesis and activities of microRNAs. We present evidence for the involvement of microRNAs in diabetes mellitus, by outlining the contribution of these small RNA molecules in the control of pancreatic beta-cell functions and by reviewing recent studies reporting changes in microRNA expression in tissues isolated from diabetes animal models. MicroRNAs hold great potential as therapeutic targets. We describe the strategies developed for the delivery of molecules mimicking or blocking the function of these tiny regulators of gene expression in living animals. In addition, because changes in serum microRNA profiles have been shown to occur in association with different human diseases, we also discuss the potential use of microRNAs as blood biomarkers for prevention and management of diabetes.
Resumo:
Publicado en la página web de la Consejería de Salud y Bienestar Social / Profesionales / Nuestro Compromiso por la Calidad / Estrategia de cuidados de Andalucía / Estrategia de cuidados de Andalucía
Resumo:
BACKGROUND Human papillomavirus (HPV)-related head and neck cancer has been associated with an improved prognosis in patients treated with radiotherapy (RT) +/- chemotherapy (CT); however, RT combined with epidermal growth factor receptor (EGFR) inhibitors has not been fully studied in this group of patients. METHODS Immunohistochemical expression of p16 and PCR of HPV16 DNA were retrospectively analyzed in tumor blocks from 108 stage III/IV head and neck cancer patients treated with RT+CT (56) or RT+EGFR inhibitors (52). Disease-free survival (DFS) and overall survival (OS) were analyzed by the Kaplan-Meier method. RESULTS DNA of HPV16 was found in 12 of 108 tumors (11%) and p16 positivity in 18 tumors (17%), with similar rates in both arms of treatment. After a median follow-up time of 35 months (range 6-135), p16-positive patients treated with RT+EGFR inhibitors showed improved survival compared with those treated with RT+CT (2-year OS 88% vs. 60%, HR 0.18; 95% CI 0.04 to 0.88; p = 0.01; and 2-year DFS 75% vs. 47%, HR 0.17; 95% CI 0.03 to 0.8; p = 0.01). However, no differences were observed in p16-negative patients (2-year OS 56% vs. 53%, HR 0.97; 95% CI 0.55 to 1.7; p = 0.9; and 2-year DFS 43% vs. 45%, HR 0.99; 95% CI 0.57 to 1.7; p = 0.9). CONCLUSIONS This is the first study to show that p16-positive patients may benefit more from RT+EGFR inhibitors than conventional RT+CT. These results are hypothesis-generating and should be confirmed in prospective trials.
Resumo:
The development of Imatinib Mesylate (IM), the first specific inhibitor of BCR-ABL1, has had a major impact in patients with Chronic Myeloid Leukemia (CML), establishing IM as the standard therapy for CML. Despite the clinical success obtained with the use of IM, primary resistance to IM and molecular evidence of persistent disease has been observed in 20-25% of IM treated patients. The existence of second generation TK inhibitors, which are effective in patients with IM resistance, makes identification of predictors of resistance to IM an important goal in CML. In this study, we have identified a group of 19 miRNAs that may predict clinical resistance to IM in patients with newly diagnosed CML.
Resumo:
It is widely accepted that pharmacologic reduction of the blood pressure of hypertensive patients reduces the risk of at least some of the major cardiovascular complications (1-5). All major studies were carried out before orally active converting enzyme inhibitors had become available. In other words, very effective antihypertensive drugs have been around for quite some time and have already proven their efficacy. Therefore, the considerable enthusiasm that has developed during the very recent years for the new converting enzyme inhibitors should be evaluated in the light of previously available antihypertensive drugs, the more so, as drugs cheaper than converting enzyme inhibiting agents are presently available. Thus, the increased expense when using this new class of antihypertensive compounds should be justified by a therapeutic gain. When evaluating a class of antihypertensive drugs such as converting enzyme inhibitors, there are basically three main considerations: What is their efficacy in long-term use? This includes the effect on blood pressure, on heart, on hemodynamics, and on blood flow distribution. What are the metabolic effects? What is the effect on sodium and potassium excretion? How are the serum lipids affected by its use? Are there any untoward effects related either to the chemical structure of the compound per se or rather to the approach? In particular, are there any central effects of the drug which can cause discomfort to the patient? The following discussion has the principal aim to review these aspects with chronic use of oral converting enzyme inhibiting agents without, however, even attempting to provide an exhaustive review of the subject.