833 resultados para All-optical packet routing
Resumo:
Gas temperature is of major importance in plasma based surface treatment, since the surface processes are strongly temperature sensitive. The spatial distribution of reactive species responsible for surface modification is also influenced by the gas temperature. Industrial applications of RF plasma reactors require a high degree of homogeneity of the plasma in contact with the substrate. Reliable measurements of spatially resolved gas temperatures are, therefore, of great importance. The gas temperature can be obtained, e.g. by optical emission spectroscopy (OES). Common methods of OES to obtain gas temperatures from analysis of rotational distributions in excited states do not include the population dynamics influenced by cascading processes from higher electronic states. A model was developed to evaluate this effect on the apparent rotational temperature that is observed. Phase resolved OES confirmed the validity of this model. It was found that cascading leads to higher apparent temperatures, but the deviation (~25 K) is relatively small and can be ignored in most cases. This analysis is applied to investigate axially and radially resolved temperature profiles in an inductively coupled hydrogen RF discharge.
Resumo:
Phase resolved optical emission spectroscopy (PROES) bears considerable potential for diagnostics of RF discharges that give detailed insight of spatial and temporal variations of excitation processes. Based on phase and space resolved measurements of the population dynamics of excited states several diagnostic techniques have been developed. Results for a hydrogen capacitively coupled RF (CCRF) discharge are discussed as an example. The gas temperature, the degree of dissociation and the temporally and spatially resolved electron energy distribution function (EEDF) of energetic electrons (>12eV) are measured. Furthermore, the pulsed electron impact excitation during the field reversal phase, typical for hydrogen CCRF discharges, is exploited for measurements of atomic and molecular data like lifetimes of excited states, coefficients for radiationless collisional de-excitation (quenching coefficients), and cascading processes from higher electronic states.
Resumo:
The electron dynamics in the low-pressure operation regime ($«$ 5 Pa) of a neon capacitively coupled plasma is investigated using phase-resolved optical emission spectroscopy. Plasma ionization and sustainment mechanisms are governed by the expanding and contracting sheath and complex wave–particle interactions. Electrons are energized through the advancing and retreating electric field of the RF sheath. The associated interaction of energetic sheath electrons with thermal bulk plasma electrons drives a two-stream instability also dissipating power in the plasma.
Resumo:
We have determined the absolute configurations of conformationally flexible cis-dihydrodiol metabolites (cis-1,2-dihydroxy-3,5-cyclohexadienes), bearing different substituents (e.g., Br, F, CF3, CN, Me) in 3- and 5-positions, by the method of confrontation of experimental and calculated electronic CD spectra and optical rotations. Convergent results were obtained by both methods in eight out of ten cases. For the difficult cases, where either conformer population and/or chiroptical properties (calculated rotational strengths of the long-wavelength Cotton effect or optical rotations) of contributing conformers remain inconclusive, the absolute configuration could still be correctly assigned based on one of the biased properties (either ECD or optical rotation). This approach appears well-suited for a broad spectrum of conformationally flexible chiral molecules.
Resumo:
Inductively coupled radio-frequency plasmas can be operated in two distinct modes. At low power and comparatively low plasma densities the plasma is sustained in capacitive mode (E-mode). As the plasma density increases a transition to inductive mode (H-mode) is observed. This transition region is of particular interest and governed by non-linear dynamics, which under certain conditions results in structure formation with strong spatial gradients in light emission. These modes show pronounced differences is various measureable quantities e.g. electron densities, electron energy distribution functions, ion energy distribution functions, dynamics of optical light emission. Here the transition from E- to H- mode in an oxygen containing inductively coupled plasma (ICP) is investigated using space and phase resolved optical emission spectroscopy (PROES). The emission, measured phase resolved, allows investigation of the electron dynamics within the rf cycle, important for understanding the power coupling and ionization mechanisms in the discharge. The temporal variation of the emission reflects the dynamics of relatively high-energy electrons. It is possible to distinguish between E- and H-mode from the intensity and temporal behaviour of the emission.
Resumo:
Refractive index determination of minerals and gems often requires their immersion in fluids with the same refractive index. However, these natural materials frequently have refractive indices above the ranges of common organic solvents. Most available high refractive index immersion materials are solid at room temperature, toxic, noxious, corrosive, carcinogenic, or any combination thereof. Since the physical properties of ionic liquids can be tuned by varying the cation and/or anion, we have developed immersion fluids for mineralogical studies which are relatively benign. We report here the syntheses of a range of ionic liquids ( many novel) based on the 1-alkyl-3-methylimidazolium cation, which all have refractive indices greater than 1.4, and can be used as immersion fluids for optical mineralogy studies. We further show that for a series of ionic liquids with the same anion, the refractive indices can be adjusted by systematic changes in the cation.
Resumo:
Measurements of the duration of X-ray lasing pumped with picosecond pulses from the VULCAN optical laser are obtained using a streak camera with 700 fs temporal resolution. Combined with a temporal smearing due to the spectrometer employed, we have measured X-ray laser pulse durations for Ni-like silver at 13.9 nm with a total time resolution of 1.1 ps. For Ni-like silver, the X-ray laser output has a steep rise followed by an approximately exponential temporal decay with measured full-width at half-maximum (FWHM) of 3.7 (+/-0.5) ps. For Ne-like nickel lasing at 23.1 nm, the measured duration of lasing is approximate to10.7 (+/-1) ps (FWHM). An estimate of the duration of the X-ray laser gain has been obtained by temporally resolving spectrally integrated continuum and resonance line emission. For Ni-like silver, this time of emission is approximate to22 (+/-2) ps (FWHM), while for Ne-like nickel we measure approximate to35 (+/-2) ps (FWHM). Assuming that these times of emission correspond to the gain duration, we show that a simple model consistently relates the gain durations to the measured durations of X-ray lasing. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Traditionally, the Internet provides only a “best-effort” service, treating all packets going to the same destination equally. However, providing differentiated services for different users based on their quality requirements is increasingly becoming a demanding issue. For this, routers need to have the capability to distinguish and isolate traffic belonging to different flows. This ability to determine the flow each packet belongs to is called packet classification. Technology vendors are reluctant to support algorithmic solutions for classification due to their nondeterministic performance. Although content addressable memories (CAMs) are favoured by technology vendors due to their deterministic high-lookup rates, they suffer from the problems of high-power consumption and high-silicon cost. This paper provides a new algorithmic-architectural solution for packet classification that mixes CAMs with algorithms based on multilevel cutting of the classification space into smaller spaces. The provided solution utilizes the geometrical distribution of rules in the classification space. It provides the deterministic performance of CAMs, support for dynamic updates, and added flexibility for system designers.
Resumo:
High-cadence, multiwavelength optical observations of a solar active region (NOAA AR 10969), obtained with the Swedish Solar Telescope, are presented. Difference imaging of white light continuum data reveals a white-light brightening, 2 minutes in duration, linked to a cotemporal and cospatial C2.0 flare event. The flare kernel observed in the white-light images has a diameter of 300 km, thus rendering it below the resolution limit of most space-based telescopes. Continuum emission is present only during the impulsive stage of the flare, with the effects of chromospheric emission subsequently delayed by approximate to 2 minutes. The localized flare emission peaks at 300% above the quiescent flux. This large, yet tightly confined, increase in emission is only resolvable due to the high spatial resolution of the Swedish Solar Telescope. An investigation of the line-of-sight magnetic field derived from simultaneous MDI data shows that the continuum brightening is located very close to a magnetic polarity inversion line. In addition, an Ha flare ribbon is directed along a region of rapid magnetic energy change, with the footpoints of the ribbon remaining cospatial with the observed white-light brightening throughout the duration of the flare. The observed flare parameters are compared with current observations and theoretical models for M- and X-class events and we determine the observed white-light emission is caused by radiative back-warming. We suggest that the creation of white-light emission is a common feature of all solar flares.
Resumo:
Thermochemical surface gas nitriding of ß21s, Timetal 205 and a Ti–Al alloy was conducted using differential scanning calorimeter equipment, in nominally pure nitrogen at 850 °C and 950 °C (ß21s), 730 °C and 830 °C (Timetal 205), and 950 °C and 1050 °C (Ti–Al) for 1 h, 3 h and 5 h. X-ray diffraction analyses showed new phases formed in the nitrided layer, depending on the alloy and the time and the temperature of nitriding. Microstructures were analyzed using optical microscopy. Cross-sectional microhardness profiles of cross-sectional samples after nitriding were obtained using a Knoop indenter.
Resumo:
PURPOSE: Age-related macular degeneration (AMD) is the most common cause of blindness in older people in developed countries, and risk factors for this condition may be classified as genetic and environmental. Apolipoprotein E is putatively involved in the transport of the macular pigment (MP) carotenoids lutein (L) and zeaxanthin (Z) in serum and may also influence retinal capture of these compounds. This study was designed to investigate the relationship between macular pigment optical density (MPOD) and ApoE genotype. METHODS: This was a cross-sectional study of 302 healthy adult subjects. Dietary intake of L and Z was assessed by food frequency questionnaire, and MPOD was measured by customized heterochromatic flicker photometry. Serum L and Z were measured by HPLC. ApoE genotyping was performed by direct polymerase chain reaction amplification and DNA nucleotide sequencing from peripheral blood. RESULTS: Genotype data were available on 300 of the 302 (99.3%) subjects. The mean (+/- SD) age of the subjects in this study was 47.89 +/- 11.05 (range, 21-66) years. Subjects were classed into one of three ApoE genotype groups, as follows: group 1, epsilon2epsilon2 or epsilon2epsilon3; group 2, epsilon3epsilon3; group 3, epsilon2epsilon4 or epsilon3epsilon4 or epsilon4epsilon4. All three groups were statistically comparable in terms of age, sex, body mass index, cigarette smoking, and dietary and serum levels of L and Z. There was a statistically significant association between ApoE genotype and MPOD. Subjects who had at least one epsilon4 allele had a higher MPOD across the macula than subjects without this allele (group 1 MPOD area, 0.70 +/- 0.40; group 2 MPOD area, 0.67 +/- 0.42; group 3 MPOD area, 0.85 +/- 0.46; one-way ANOVA, P = 0.014. CONCLUSIONS: These results suggest that ApoE genotype status is associated with MPOD. This association may explain, at least in part, the putative protective effect of the epsilon4 allele for AMD and is consistent with the view that apolipoprotein profile influences the transport and/or retinal capture of circulating L and/or Z.
Resumo:
The formation of chemically etched fibre tips for use in optical scanning probe microscopy is addressed. For tips formed at a cleaved fibre end in the bulk of a buffered HF acid solution the morphological features (tip height, cone angle) are found to depend strongly on the temperature and etchant composition. The tip formation process is analysed and explained in terms of a simple model in which the only pertinent physical parameters are the fibre core diameter and etch rates of the fibre core and cladding. The etch rates are determined in separate experiments as a function of temperature (in the range 24-50 degreesC) for etchant solutions of de ionised water: 50% HF acid: 40% NH4F in the volume ratio 1 : 1 : X for X=2, 4 and 6, and used in the model to yield a correct description of the experimental tip cone angles. The model is successfully extended to the intriguing case of negative tip formation which initiates in a normal, positive tip structure. By contrast, tip formation in the meniscus region of a bare fibre/etchant/organic solvent system is found to be independent of etchant composition and temperature. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A rapid surface plasmon resonance (SPR) screening assay has been developed for the combined detection of T-2 and HT-2 toxins in naturally contaminated cereals using a sensor chip coated with an HT-2 toxin derivative and a monoclonal antibody. The antibody raised against HT-2 displayed high cross-reactivity with T-2 toxin while there was no cross-reaction observed with other commonly occurring trichothecenes. A simple extraction procedure using 40% methanol was applied to baby food, breakfast cereal, and wheat samples prior to biosensor analysis. Limits of detection (LOD) for each matrix were determined as 25 mu g kg(-1) for baby food and breakfast cereal and 26 mu g kg(-1) for wheat. Intra-assay precision (n = 6) was calculated for each matrix. The results were expressed as the relative standard deviation and determined as 2.8% (100 mu g kg(-1)) and 1.8% (200 mu g kg(-1)) in breakfast cereal, 4.6% (50 mu g kg(-1)) and 3.6% (100 mu g kg(-1)) in wheat and 0.97% (25 mu g kg(-1)) and 6.3% (50 mu g kg(-1)) in baby food. Between run precision (n = 3) performed at the same levels yielded relative standard deviations of 6.7% and 3.9% for breakfast cereals, 3.3% and 1.6% for wheat and 6.8% and 0.08% for baby food, respectively. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Paralytic shellfish poisoning (PSP) toxin monitoring in shellfish is currently performed using the internationally accredited AOAC mouse bioassay. Due to ethical and performance-related issues associated with this bioassay, the European Commission has recently published directives extending procedures that may be used for official PSP control. The feasibility of using a surface plasmon resonance optical biosensor to detect PSP toxins in shellfish tissue below regulatory levels was examined. Three different PSP toxin protein binders were investigated: a sodium channel receptor (SCR) preparation derived from rat brains, a monoclonal antibody (GT13-A) raised to gonyautoxin 2/3, and a rabbit polyclonal antibody (R895) raised to saxitoxin (STX). Inhibition assay formats were used throughout. Immobilization of STX to the biosensor chip surface was achieved via amino-coupling. Specific binding and inhibition of binding to this surface was achieved using all proteins tested. For STX calibration curves, 0 - 1000 ng/mL, IC50 values for each binder were as follows: SCR 8.11 ng/mL; GT13-A 5.77 ng/mL; and R895 1.56 ng/mL. Each binder demonstrated a different cross-reactivity profile against a range of STX analogues. R895 delivered a profile that was most likely to detect the widest range of PSP toxins at or below the internationally adopted regulatory limits.