973 resultados para Alkene, carbon maximum number


Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We conducted a six-week investigation of the sea ice inorganic carbon system during the winter-spring transition in the Canadian Arctic Archipelago. Samples for the determination of sea ice geochemistry were collected in conjunction with physical and biological parameters as part of the 2010 Arctic-ICE (Arctic - Ice-Covered Ecosystem in a Rapidly Changing Environment) program, a sea ice-based process study in Resolute Passage, Nunavut. The goal of Arctic-ICE was to determine the physical-biological processes controlling the timing of primary production in Arctic landfast sea ice and to better understand the influence of these processes on the drawdown and release of climatically active gases. The field study was conducted from 1 May to 21 June, 2010.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This is part 2 of a study examining southwest African continental margin sediments from nine sites on a north-south transect from the Congo Fan (4°S) to the Cape Basin (30°S) representing two glacial (MIS 2 and 6a) and two interglacial stages (MIS 1 and 5e). Contents, distribution patterns, and molecular stable carbon isotope signatures of long-chain n-alkanes (C27-C33) and n-alkanols (C22-C32) as indicators of land plant vegetation of different biosynthetic types were correlated with concentrations and distributions of pollen taxa in sediments of the same time horizons. Selected single pollen type data reveal details of vegetation changes, but the overall picture is best illustrated by summing pollen known to predominantly derive from C4 plants or C4 plus CAM plants. The C4 plant signals in the biomarkers are recorded in the delta13C data and in the abundances of C31 and C33 n-alkanes, and the C32 n-alkanol. Calculated clusters of wind trajectories for austral summer and winter situations for the Holocene and the Last Glacial Maximum afford information on the source areas for the lipids and pollen and their transport pathways to the ocean. This multidisciplinary approach provides clear evidence of latitudinal differences in leaf wax lipid and pollen composition, with the Holocene sedimentary data paralleling the current major phytogeographic zonations. The northern sites (Congo Fan area and northern Angola Basin) get most of their terrestrial material from the Congo Basin and the Angolan highlands dominated by C3 plants. Airborne particulates derived from the western and central South African hinterland dominated by deserts, semideserts, and savannah regions are rich in organic matter from C4 plants. As can be expected from the present and glacial positions of the phytogeographic zones, the carbon isotopic signatures of n-alkanes and n-alkanols both become isotopically more enriched in 13C from north to south. In the northern part of the transect the relative importance of C4 plant indicators is higher during the glacials than in the interglacials, indicating a northward extension of arid zones favoring grass vegetation. In the south, where grass-rich vegetation merges into semidesert and desert, the difference in C4 plant indicators is small.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Continuous black carbon (BC) observations were conducted from 1999 through 2009 by an Aethalometer (AE10) and from 2006 through 2011 by a Multi-Angle Absorption Photometer (MAAP) at Neumayer Station (NM) under stringent contamination control. Considering the respective observation period, BC concentrations measured by the MAAP were somewhat higher (median ± standard deviation: 2.1 ± 2.0 ng/m**3) compared to the AE10 results (1.6 ± 2.1 ng/m**3). Neither for the AE10 nor for the MAAP data set a significant long-term trend could be detected. Consistently a pronounced seasonality was observed with both instruments showing a primary annual maximum between October and November and a minimum in April with a maximum/minimum ratio of 4.5/1.6 = 3.8 and 2.7/0.64 = 4.2 for the MAAP and AE10 data, respectively. Occasionally a secondary summer maximum in January/February was visible. With the aim to assess the impact of BC on optical properties of the aerosol at NM, we evaluated the BC data along with particle scattering coefficients measured by an integrating nephelometer. We found the mean single scattering albedo of w550 = 0.992 ± 0.0090 (median: 0.994) at a wavelength of 550 nm with a range of values from 0.95 to 1.0.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ever since its discovery, Eocene Thermal Maximum 2 (ETM2; ~53.7 Ma) has been considered as one of the "little brothers" of the Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma) as it displays similar characteristics including abrupt warming, ocean acidification, and biotic shifts. One of the remaining key questions is what effect these lesser climate perturbations had on ocean circulation and ventilation and, ultimately, biotic disruptions. Here we characterize ETM2 sections of the NE Atlantic (Deep Sea Drilling Project Sites 401 and 550) using multispecies benthic foraminiferal stable isotopes, grain size analysis, XRF core scanning, and carbonate content. The magnitude of the carbon isotope excursion (0.85-1.10 per mil) and bottom water warming (2-2.5°C) during ETM2 seems slightly smaller than in South Atlantic records. The comparison of the lateral d13C gradient between the North and South Atlantic reveals that a transient circulation switch took place during ETM2, a similar pattern as observed for the PETM. New grain size and published faunal data support this hypothesis by indicating a reduction in deepwater current velocity. Following ETM2, we record a distinct intensification of bottom water currents influencing Atlantic carbonate accumulation and biotic communities, while a dramatic and persistent clay reduction hints at a weakening of the regional hydrological cycle. Our findings highlight the similarities and differences between the PETM and ETM2. Moreover, the heterogeneity of hyperthermal expression emphasizes the need to specifically characterize each hyperthermal event and its background conditions to minimalize artifacts in global climate and carbonate burial models for the early Paleogene.