953 resultados para Alkali-labile phosphate
Resumo:
The Labrador Sea is a basin with oceanic crust in its deep part. Bottom morphology of the Labrador Sea is rather complicated. Data of seismic profiling in this region indicate presence of numerous submarine mountains and hills, which are dominated by volcanic rocks. Some chemical and mineral characteristics of the rocks, in particular, high concentrations of alkalis and phosphorus, and presence of high-titanium augite, ilmenite, and devitrified glass enriched in K and Na, allow us to attribute them to K-Na subalkaline picrites typical for ocean islands, seamounts, and oceanic plateaus. Rocks of the K-Na subalkaline series usually form submarine basements and subaerial volcanoes of ocean islands, seamounts, and oceanic plateaus. Thus, the suggestion on formation of the highs on the continental crust is not confirmed by petrographic data, which require a refinement of the tectonic model of the northern part of the Labrador Sea.
Resumo:
Feldspars are the most abundant rock-forming minerals in the Earth’s crust, but their magnetic properties have not been rigorously studied. This work focuses on the intrinsic magnetic anisotropy of 31 feldspar samples with various chemical compositions. Because feldspar is often twinned or shows exsolution textures, measurements were performed on twinned and exsolved samples as well as single crystals. The anisotropy is controlled by the diamagnetic susceptibility and displays a consistent orientation of principal susceptibility axes; the most negative or minimum susceptibility is parallel to [010], and the maximum (least negative) is close to the crystallographic [001] axis. However, the magnetic anisotropy is weak when compared to other rock-forming minerals, 1.53 × 10−9 m3 kg−1 at maximum. Therefore, lower abundance minerals, such as augite, hornblende or biotite, often dominate the bulk paramagnetic anisotropy of a rock. Ferromagnetic anisotropy is not significant in most samples. In the few samples that do show ferromagnetic anisotropy, the principal susceptibility directions of the ferromagnetic subfabric do not display a systematic orientation with respect to the feldspar lattice. These results suggest that palaeointensity estimates of the geomagnetic field made on single crystals of feldspar will not be affected by a systematic orientation of the ferromagnetic inclusions within the feldspar lattice.
Experimentally determined stability of alkali amphibole in metasomatised dunite at sub-arc pressures