1000 resultados para Adobs orgànics -- Girona
Resumo:
Comentari del llibre Cancionero del Barón de Claret, compilat a Catalunya. El comentari es centra en la influència de Lope de Vega i de Calderón de la Barca sobre aquesta obra. Resulta més influent Lope de Vega, malgrat que en el moment de la compilació de la obra ja no estava de moda, que Calderón de la Barca
Resumo:
Es presenta una crítica textual de fragments de l’obra d’Ausiàs Marc. Es tracten, entre altres, les imatges marineres
Resumo:
Repàs de les posteriors referències en documents d’arxiu al miracle de les mosques als setges de Girona
Resumo:
Breu repàs de la vida i, sobretot, de l’obra d’Agustí Eura, home de lletres de formació barroca amb una obra àmplia en català, castellà i llatí
Resumo:
Explicació del motius que Robert Brian Tate podia tenir per a triar l’humanista quatrecentista Joan Margarit i Pau com a figura del seu ex-libris
Resumo:
Descripció del viatge a Egipte, així com de les impressions que van provocar l’autora els indrets que va visitar com ara les piràmides de la vall de Giza, Memfis, Sakkara i Dashur entre altres
Resumo:
Descripció del viatge entre Llagostera i Romanyà de la Selva realitzat per l’autora un dia de tardor
Resumo:
Introducció als Fulls de la Revista de Girona de la primavera 2002, dedicats a la traducció de poetes grecs i llatins. L’autora és la coordinadora d’aquests fulls
Resumo:
Presentació d’una enquesta feta a set dones de lletres sobre els motius que tenen aquestes per a escriure en femení. Es tracta de les escriptores Dolors Gracia i Cornellà, M. Rosa Font i Massot, Núria Esponellà, Àngels Gardella, Assumpció Cantalozella, Susanna Rafart i Núria Tió i Rotllan
Resumo:
This paper examines a dataset which is modeled well by thePoisson-Log Normal process and by this process mixed with LogNormal data, which are both turned into compositions. Thisgenerates compositional data that has zeros without any need forconditional models or assuming that there is missing or censoreddata that needs adjustment. It also enables us to model dependenceon covariates and within the composition
Resumo:
The statistical analysis of compositional data should be treated using logratios of parts,which are difficult to use correctly in standard statistical packages. For this reason afreeware package, named CoDaPack was created. This software implements most of thebasic statistical methods suitable for compositional data.In this paper we describe the new version of the package that now is calledCoDaPack3D. It is developed in Visual Basic for applications (associated with Excel©),Visual Basic and Open GL, and it is oriented towards users with a minimum knowledgeof computers with the aim at being simple and easy to use.This new version includes new graphical output in 2D and 3D. These outputs could bezoomed and, in 3D, rotated. Also a customization menu is included and outputs couldbe saved in jpeg format. Also this new version includes an interactive help and alldialog windows have been improved in order to facilitate its use.To use CoDaPack one has to access Excel© and introduce the data in a standardspreadsheet. These should be organized as a matrix where Excel© rows correspond tothe observations and columns to the parts. The user executes macros that returnnumerical or graphical results. There are two kinds of numerical results: new variablesand descriptive statistics, and both appear on the same sheet. Graphical output appearsin independent windows. In the present version there are 8 menus, with a total of 38submenus which, after some dialogue, directly call the corresponding macro. Thedialogues ask the user to input variables and further parameters needed, as well aswhere to put these results. The web site http://ima.udg.es/CoDaPack contains thisfreeware package and only Microsoft Excel© under Microsoft Windows© is required torun the software.Kew words: Compositional data Analysis, Software
Resumo:
The R-package “compositions”is a tool for advanced compositional analysis. Its basicfunctionality has seen some conceptual improvement, containing now some facilitiesto work with and represent ilr bases built from balances, and an elaborated subsys-tem for dealing with several kinds of irregular data: (rounded or structural) zeroes,incomplete observations and outliers. The general approach to these irregularities isbased on subcompositions: for an irregular datum, one can distinguish a “regular” sub-composition (where all parts are actually observed and the datum behaves typically)and a “problematic” subcomposition (with those unobserved, zero or rounded parts, orelse where the datum shows an erratic or atypical behaviour). Systematic classificationschemes are proposed for both outliers and missing values (including zeros) focusing onthe nature of irregularities in the datum subcomposition(s).To compute statistics with values missing at random and structural zeros, a projectionapproach is implemented: a given datum contributes to the estimation of the desiredparameters only on the subcompositon where it was observed. For data sets withvalues below the detection limit, two different approaches are provided: the well-knownimputation technique, and also the projection approach.To compute statistics in the presence of outliers, robust statistics are adapted to thecharacteristics of compositional data, based on the minimum covariance determinantapproach. The outlier classification is based on four different models of outlier occur-rence and Monte-Carlo-based tests for their characterization. Furthermore the packageprovides special plots helping to understand the nature of outliers in the dataset.Keywords: coda-dendrogram, lost values, MAR, missing data, MCD estimator,robustness, rounded zeros
Resumo:
A compositional time series is obtained when a compositional data vector is observed atdifferent points in time. Inherently, then, a compositional time series is a multivariatetime series with important constraints on the variables observed at any instance in time.Although this type of data frequently occurs in situations of real practical interest, atrawl through the statistical literature reveals that research in the field is very much in itsinfancy and that many theoretical and empirical issues still remain to be addressed. Anyappropriate statistical methodology for the analysis of compositional time series musttake into account the constraints which are not allowed for by the usual statisticaltechniques available for analysing multivariate time series. One general approach toanalyzing compositional time series consists in the application of an initial transform tobreak the positive and unit sum constraints, followed by the analysis of the transformedtime series using multivariate ARIMA models. In this paper we discuss the use of theadditive log-ratio, centred log-ratio and isometric log-ratio transforms. We also presentresults from an empirical study designed to explore how the selection of the initialtransform affects subsequent multivariate ARIMA modelling as well as the quality ofthe forecasts
Resumo:
A joint distribution of two discrete random variables with finite support can be displayed as a two way table of probabilities adding to one. Assume that this table hasn rows and m columns and all probabilities are non-null. This kind of table can beseen as an element in the simplex of n · m parts. In this context, the marginals areidentified as compositional amalgams, conditionals (rows or columns) as subcompositions. Also, simplicial perturbation appears as Bayes theorem. However, the Euclideanelements of the Aitchison geometry of the simplex can also be translated into the tableof probabilities: subspaces, orthogonal projections, distances.Two important questions are addressed: a) given a table of probabilities, which isthe nearest independent table to the initial one? b) which is the largest orthogonalprojection of a row onto a column? or, equivalently, which is the information in arow explained by a column, thus explaining the interaction? To answer these questionsthree orthogonal decompositions are presented: (1) by columns and a row-wise geometric marginal, (2) by rows and a columnwise geometric marginal, (3) by independenttwo-way tables and fully dependent tables representing row-column interaction. Animportant result is that the nearest independent table is the product of the two (rowand column)-wise geometric marginal tables. A corollary is that, in an independenttable, the geometric marginals conform with the traditional (arithmetic) marginals.These decompositions can be compared with standard log-linear models.Key words: balance, compositional data, simplex, Aitchison geometry, composition,orthonormal basis, arithmetic and geometric marginals, amalgam, dependence measure,contingency table
Resumo:
L'article és una reflexió sobre els requisits de formació dels professionals que demana la societat del coneixement. Un dels objectius més importants que ha de tenir la universitat en la societat del coneixement és la formació de professionals competents que tinguin prou eines intel·lectuals per a enfrontar-se a la incertesa de la informació, a la consciència que aquesta té una data de caducitat a curt termini i a l'ansietat que això provoca. Però, a més, també han de ser capaços de definir i crear les eines de treball amb què donaran sentit i eficàcia a aquest coneixement mudable i mutant. Per això, l'espai europeu d'ensenyament superior prioritza la competència transversal del treball col·laboratiu amb l'objectiu de promoure un aprenentatge autònom, compromès i adaptat a les noves necessitats de l'empresa del segle xxi. En aquest context, es presenta l'entorn teòric que fonamenta el treball desenvolupat a la plataforma informàtica ACME, que uneix el treball col·laboratiu i l'aprenentatge semipresencial o blended learning. Així mateix, es descriuen amb detall alguns exemples de wikis, paradigma del treball col·laboratiu, fets en assignatures impartides per la Universitat de Girona en l'espai virtual ACME