863 resultados para Adaptive Information Dispersal Algorithm


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a derivative-free optimization algorithm coupled with a chemical process simulator for the optimal design of individual and complex distillation processes using a rigorous tray-by-tray model. The proposed approach serves as an alternative tool to the various models based on nonlinear programming (NLP) or mixed-integer nonlinear programming (MINLP) . This is accomplished by combining the advantages of using a commercial process simulator (Aspen Hysys), including especially suited numerical methods developed for the convergence of distillation columns, with the benefits of the particle swarm optimization (PSO) metaheuristic algorithm, which does not require gradient information and has the ability to escape from local optima. Our method inherits the superstructure developed in Yeomans, H.; Grossmann, I. E.Optimal design of complex distillation columns using rigorous tray-by-tray disjunctive programming models. Ind. Eng. Chem. Res.2000, 39 (11), 4326–4335, in which the nonexisting trays are considered as simple bypasses of liquid and vapor flows. The implemented tool provides the optimal configuration of distillation column systems, which includes continuous and discrete variables, through the minimization of the total annual cost (TAC). The robustness and flexibility of the method is proven through the successful design and synthesis of three distillation systems of increasing complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose and discuss a new centrality index for urban street patterns represented as networks in geographical space. This centrality measure, that we call ranking-betweenness centrality, combines the idea behind the random-walk betweenness centrality measure and the idea of ranking the nodes of a network produced by an adapted PageRank algorithm. We initially use a PageRank algorithm in which we are able to transform some information of the network that we want to analyze into numerical values. Numerical values summarizing the information are associated to each of the nodes by means of a data matrix. After running the adapted PageRank algorithm, a ranking of the nodes is obtained, according to their importance in the network. This classification is the starting point for applying an algorithm based on the random-walk betweenness centrality. A detailed example of a real urban street network is discussed in order to understand the process to evaluate the ranking-betweenness centrality proposed, performing some comparisons with other classical centrality measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Outliers are objects that show abnormal behavior with respect to their context or that have unexpected values in some of their parameters. In decision-making processes, information quality is of the utmost importance. In specific applications, an outlying data element may represent an important deviation in a production process or a damaged sensor. Therefore, the ability to detect these elements could make the difference between making a correct and an incorrect decision. This task is complicated by the large sizes of typical databases. Due to their importance in search processes in large volumes of data, researchers pay special attention to the development of efficient outlier detection techniques. This article presents a computationally efficient algorithm for the detection of outliers in large volumes of information. This proposal is based on an extension of the mathematical framework upon which the basic theory of detection of outliers, founded on Rough Set Theory, has been constructed. From this starting point, current problems are analyzed; a detection method is proposed, along with a computational algorithm that allows the performance of outlier detection tasks with an almost-linear complexity. To illustrate its viability, the results of the application of the outlier-detection algorithm to the concrete example of a large database are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Iterative Closest Point algorithm (ICP) is commonly used in engineering applications to solve the rigid registration problem of partially overlapped point sets which are pre-aligned with a coarse estimate of their relative positions. This iterative algorithm is applied in many areas such as the medicine for volumetric reconstruction of tomography data, in robotics to reconstruct surfaces or scenes using range sensor information, in industrial systems for quality control of manufactured objects or even in biology to study the structure and folding of proteins. One of the algorithm’s main problems is its high computational complexity (quadratic in the number of points with the non-optimized original variant) in a context where high density point sets, acquired by high resolution scanners, are processed. Many variants have been proposed in the literature whose goal is the performance improvement either by reducing the number of points or the required iterations or even enhancing the complexity of the most expensive phase: the closest neighbor search. In spite of decreasing its complexity, some of the variants tend to have a negative impact on the final registration precision or the convergence domain thus limiting the possible application scenarios. The goal of this work is the improvement of the algorithm’s computational cost so that a wider range of computationally demanding problems from among the ones described before can be addressed. For that purpose, an experimental and mathematical convergence analysis and validation of point-to-point distance metrics has been performed taking into account those distances with lower computational cost than the Euclidean one, which is used as the de facto standard for the algorithm’s implementations in the literature. In that analysis, the functioning of the algorithm in diverse topological spaces, characterized by different metrics, has been studied to check the convergence, efficacy and cost of the method in order to determine the one which offers the best results. Given that the distance calculation represents a significant part of the whole set of computations performed by the algorithm, it is expected that any reduction of that operation affects significantly and positively the overall performance of the method. As a result, a performance improvement has been achieved by the application of those reduced cost metrics whose quality in terms of convergence and error has been analyzed and validated experimentally as comparable with respect to the Euclidean distance using a heterogeneous set of objects, scenarios and initial situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical modelling methodologies are important by their application to engineering and scientific problems, because there are processes where analytical mathematical expressions cannot be obtained to model them. When the only available information is a set of experimental values for the variables that determine the state of the system, the modelling problem is equivalent to determining the hyper-surface that best fits the data. This paper presents a methodology based on the Galerkin formulation of the finite elements method to obtain representations of relationships that are defined a priori, between a set of variables: y = z(x1, x2,...., xd). These representations are generated from the values of the variables in the experimental data. The approximation, piecewise, is an element of a Sobolev space and has derivatives defined in a general sense into this space. The using of this approach results in the need of inverting a linear system with a structure that allows a fast solver algorithm. The algorithm can be used in a variety of fields, being a multidisciplinary tool. The validity of the methodology is studied considering two real applications: a problem in hydrodynamics and a problem of engineering related to fluids, heat and transport in an energy generation plant. Also a test of the predictive capacity of the methodology is performed using a cross-validation method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Achieving more sustainable land and water use depends on high-quality information and its improved use. In other words, better linkages are needed between science and management. Since many stakeholders with different relationships to the natural resources are inevitably involved, we suggest that collaborative learning environments and improved information management are prerequisites for integrating science and management. Case studies that deal with resource management issues are presented that illustrate the creation of collaborative learning environments through systems analyses with communities, and an integration of scientific and experiential knowledge of components of the system. This new knowledge needs to be captured and made accessible through innovative information management systems designed collaboratively with users, in forms which fit the users' 'mental models' of how their systems work. A model for linking science and resource management more effectively is suggested. This model entails systems thinking in a collaborative learning environment, and processes to help convergence of views and value systems, and make scientists and different kinds of managers aware of their interdependence. Adaptive management provides a mechanism for applying and refining scientists' and managers' knowledge. Copyright (C) 2003 John Wiley Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inferring the spatial expansion dynamics of invading species from molecular data is notoriously difficult due to the complexity of the processes involved. For these demographic scenarios, genetic data obtained from highly variable markers may be profitably combined with specific sampling schemes and information from other sources using a Bayesian approach. The geographic range of the introduced toad Bufo marinus is still expanding in eastern and northern Australia, in each case from isolates established around 1960. A large amount of demographic and historical information is available on both expansion areas. In each area, samples were collected along a transect representing populations of different ages and genotyped at 10 microsatellite loci. Five demographic models of expansion, differing in the dispersal pattern for migrants and founders and in the number of founders, were considered. Because the demographic history is complex, we used an approximate Bayesian method, based on a rejection-regression algorithm. to formally test the relative likelihoods of the five models of expansion and to infer demographic parameters. A stepwise migration-foundation model with founder events was statistically better supported than other four models in both expansion areas. Posterior distributions supported different dynamics of expansion in the studied areas. Populations in the eastern expansion area have a lower stable effective population size and have been founded by a smaller number of individuals than those in the northern expansion area. Once demographically stabilized, populations exchange a substantial number of effective migrants per generation in both expansion areas, and such exchanges are larger in northern than in eastern Australia. The effective number of migrants appears to be considerably lower than that of founders in both expansion areas. We found our inferences to be relatively robust to various assumptions on marker. demographic, and historical features. The method presented here is the only robust, model-based method available so far, which allows inferring complex population dynamics over a short time scale. It also provides the basis for investigating the interplay between population dynamics, drift, and selection in invasive species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finding motifs that can elucidate rules that govern peptide binding to medically important receptors is important for screening targets for drugs and vaccines. This paper focuses on elucidation of peptide binding to I-A(g7) molecule of the non-obese diabetic (NOD) mouse - an animal model for insulin-dependent diabetes mellitus (IDDM). A number of proposed motifs that describe peptide binding to I-A(g7) have been proposed. These motifs results from independent experimental studies carried out on small data sets. Testing with multiple data sets showed that each of the motifs at best describes only a subset of the solution space, and these motifs therefore lack generalization ability. This study focuses on seeking a motif with higher generalization ability so that it can predict binders in all A(g7) data sets with high accuracy. A binding score matrix representing peptide binding motif to A(g7) was derived using genetic algorithm (GA). The evolved score matrix significantly outperformed previously reported

Relevância:

30.00% 30.00%

Publicador:

Resumo:

QTL detection experiments in livestock species commonly use the half-sib design. Each male is mated to a number of females, each female producing a limited number of progeny. Analysis consists of attempting to detect associations between phenotype and genotype measured on the progeny. When family sizes are limiting experimenters may wish to incorporate as much information as possible into a single analysis. However, combining information across sires is problematic because of incomplete linkage disequilibrium between the markers and the QTL in the population. This study describes formulae for obtaining MLEs via the expectation maximization (EM) algorithm for use in a multiple-trait, multiple-family analysis. A model specifying a QTL with only two alleles, and a common within sire error variance is assumed. Compared to single-family analyses, power can be improved up to fourfold with multi-family analyses. The accuracy and precision of QTL location estimates are also substantially improved. With small family sizes, the multi-family, multi-trait analyses reduce substantially, but not totally remove, biases in QTL effect estimates. In situations where multiple QTL alleles are segregating the multi-family analysis will average out the effects of the different QTL alleles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The notorious "dimensionality curse" is a well-known phenomenon for any multi-dimensional indexes attempting to scale up to high dimensions. One well-known approach to overcome degradation in performance with respect to increasing dimensions is to reduce the dimensionality of the original dataset before constructing the index. However, identifying the correlation among the dimensions and effectively reducing them are challenging tasks. In this paper, we present an adaptive Multi-level Mahalanobis-based Dimensionality Reduction (MMDR) technique for high-dimensional indexing. Our MMDR technique has four notable features compared to existing methods. First, it discovers elliptical clusters for more effective dimensionality reduction by using only the low-dimensional subspaces. Second, data points in the different axis systems are indexed using a single B+-tree. Third, our technique is highly scalable in terms of data size and dimension. Finally, it is also dynamic and adaptive to insertions. An extensive performance study was conducted using both real and synthetic datasets, and the results show that our technique not only achieves higher precision, but also enables queries to be processed efficiently. Copyright Springer-Verlag 2005

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adaptive management is the pathway to effective conservation, use and management of Australia’s coastal catchments and waterways. While the concepts of adaptive management are not new, applications involving both assessment and management responses are indeed limited at the national and regional scales. This paper outlines the components of a systematic framework for linking scientific knowledge, existing tools, planning approaches and participatory processes to achieve healthy regional partnerships between community, industry, government agencies and science providers to overcome institutional barriers and uncoordinated monitoring. The framework developed by the Coastal CRC (www.coastal.crc.org.au/amf/amf_index.htm) is hierarchical in the way it displays information to allow associated frameworks to be integrated, and represents a construct in which processes, information, decision tools and outcomes are brought together in a structured and transparent way for adaptive catchment and coastal management. This paper proposes how an adaptive management approach could be used to benefit the implementation of the Reef Water Quality Protection Plan (RWQPP).