920 resultados para Activated Potassium
Resumo:
The effect of uroguanylin (UGN) oil K(+) and H(+) secretion in the renal tubules of the rat kidney was studied using in vivo stationary microperfusion. For the study of K(+) secretion, a tubule was Punctured to inject a column of FDC-green-colored Ringer's solution with 0.5 mmol KCI/L 10(-6)(mol UGN/L, and oil was Used to block fluid flow. K(+) activity and transepithelial potential differences (PD) were measured with double microelectrodes (K(+) ion-selective resin vs. reference) in the distal tubules of the same nephron. During perfusion, K(+) activity rose exponentially, from 0.5 mmol/L to stationary concentration, allowing for the calculation of K(+) secretion J(K)). JK increased from 0.63 +/- 0.06 nmol.cm(-2).s(-1) in the control croup to 0.85 +/- 0.06 in the UGN group (p < 0.01). PD was -51.0 +/- 5.3 mV in the control group and -50.3 +/- 4.98 mV in the UGN group. In the presence of 10(-7) mol iberiotoxin/L, the UGN effect was abolished: JK was 0.37 +/- 0.038 nmol-cm(-2).s(-1) in the absence of, and 0.38 +/- 0.025 in the presence of, UGN. indicating its action oil rnaxi-K channels. In another series of experiments, renal tubule acidification was studied, using similar method: proximal and distal tubules were perfused with solutions containing 25 mmol NaHCO(3)/L. Acidification half-time was increased both in proximal and distal segments and, as a consequence, bicarbonate reabsorption decreased in the presence of UGN (in proximal tubules, from 2.40 +/- 0.26 to 1.56 +/- 0.21 nmol-cm(-2).s(-1)). When the Na(+)/H(+) exchanger was inhibited by 10(-4) mol hexamethylene amiloride (HMA)/L, the control and UGN groups were not significantly different. In the late distal tubule, after HMA, UGN significantly reduced J(HCO3)(-). indicating all effect of UGN oil H(+)-ATPase. These data show that UGN stimulated J(K)(+) by actin, oil maxi-K channels. and decreased J(HCO3)(-) by acting on NHE3 in proximal and H(+)-ATPase in distal tubules.
Resumo:
Monolithic silica xerogels doped with different concentrations of Er3+, Yb3+ and Al3+ were prepared by sol-gel route. Densification was achieved by thermal treatment in air at 950degreesC for 120 h with a heating rate of 0.1degreesC/min. We studied the luminescence properties of the I-4(13/2)-->I-4(15/2) emission band of Er3+ as a function of the Al/Er/Yb concentration and we paid particular attention to the alumina effects. Raman spectroscopy and Vis-NIR absorption were used to monitor the degree of densification of the glasses and the residual OH content.
Resumo:
Dynamic viscosity of binary mixtures of poly(ethylene glycol) molar mass 1500 da + water, potassium phosphate + water, and ternary mixtures of poly(ethylene glycol) molar mass 1500 da + potassium phosphate + water were determined at 303.15 K Binary and ternary mixture viscosities showed a direct logarithm-type relation with the increase of poly(ethylene glycol) and potassium phosphate contents. The models used for viscosity correlation gave a good fit to the experimental data.
Resumo:
A recent and innovative method to include Ti into the columbite precursor has permitted to synthesize 0.9PMN-0.1PT powders with high homogeneity. The present work describes this methodology, named modified columbite method, showing that the reaction between MN(T)and PbO at 800 degrees C for 2 h results in perovskite single-phase. The crystal structure alterations in the columbite and perovskite phases obtained by this methodology and the effects of potassium doping were investigated by the Rietveld method. Changes in the powder morphology, density and weight loss during the sintering process were also studied. Conclusively, potassium does not affect significantly the perovskite amount, but reduces the particle and grain sizes. This dopant also changes the relaxor behavior of 0.9PMN-0.1 PT ceramic, reducing the dielectric loss and enhancing the diffuseness of the phase transition. (C) 2005 Published by Elsevier Ltd and Techna Gronp S.r.l.
Resumo:
A trial was conducted during 1994-95 to study the effect of potassium fertilization on a guava (Psidium guajava L.) culture for 3 years. The control plots (without K) showed fruit production and potassium exportation that did not agree with the levels obtained by chemical analysis of the soil. Physical, chemical, mineralogic and morphologic analyses were performed on the red yellow latosol to identify minerals able to supply potassium, with emphasis on the fact that guava trees have a considerably widespread root system. The results obtained confirmed the presence of minerals in this soil that can supply potassium to the trees through weathering. Feldspars were identified in the silt fraction and micas in the clay fraction by X-ray diffractometry. The determination of total potassium revealed that the silt fraction of the soil had the largest absolute amounts of potassium, followed by clay. However, in view of its greater content, clay was the fraction that contributed most to the total amounts of potassium detected.
Resumo:
Cotton (Gossypium hirsutum var. Latifolium) was grown in nutrient media, at two K levels: 58.5 mg/K and 11.7 mg/K. Potassium deficiency (11.7 mg K/g of K) was imposed upon cotton plants at different stages of plant development. A sequence of increasing sensitivity to K deficiency among cotton plant parts was observed: leaves < bolls < roots < stems. When K deficiency symptoms are clearly visible in the leaves, all the other plant parts are already affected. Bolls are a very important component in K partitioning within the cotton plant, but K is required most by the bur itself and is not translocated to seeds or fibers. Cotton could overcome a 30 day deficiency late in the season without significant losses in lint and seed cotton yields.
Resumo:
The dielectric permittivity of Na0.80K0.20NbO3 ceramic was investigated by impedance spectroscopy. The dielectric characterization was performed from room temperature to 800 degreesC, in the frequency range 5 Hz-13 MHz. The bulk permittivity was derived by the variation of the imaginary part of the impedance as a function of reciprocal angular frequency. The permittivity values as a function of temperature showed two maxima. The first maximum is very similar at 200degreesC and the second one positioned at around 400degreesC, which was associated to Curie's temperature. The evolution of the complex permittivity as a function of frequency and temperature was investigated. At low frequency dispersion was investigated in terms of dielectric loss. The Na0.80K0.20NbO3 showed a dissipation factor between 5 and 40 over a frequency range from 1 to 10(2) kHz. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Thin films of potassium niobate were deposited on MgO (100) substrates by the polymeric precursor method and annealing in static air at 600 degreesC for 20 h. The obtained films were characterized by X-ray diffraction, atomic force microscopy (AFM) and the prism coupling method. The phi-scan diffraction evidenced the growth of the films with fourfold symmetry. AFM study shows that the films are homogeneous, dense and present a smooth surface. The refractive index and optical losses were strongly influenced by the degree of crystallinity. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
C5H9BF3KS2, triclinic, P (1) over bar (no. 2), a = 11.9238(5) angstrom, b = 13.6060(5) angstrom, c = 14.0280(3) angstrom, alpha = 114.995(2)degrees, beta = 92.035(2)degrees, gamma = 92.390(2)degrees, V = 2057.4 angstrom(3), Z = 8, R-gt(F) = 0.049, wR(ref)(F-2) = 0.117, T = 296 K.
Resumo:
Background and Objectives. A combination of epidural and general anesthesia has been widely used to attenuate the surgical stress response and to provide postoperative analgesia. This case report illustrates the use of this anesthetic technique. Analgesia was induced with local anesthetic in the immediate postoperative period using unintentional 19.1% potassium chloride (KCI) as diluent. Methods. An ASA I male patient was scheduled for surgical correction of idiopathic megaesophagus under continuous epidural anesthesia combined with general anesthesia. In the postoperative period, while preparing 10 mt 0.125% bupivacaine to be administered through the epidural catheter for pain control, 5 mt 19.1% KCI was unintentionally used as diluent, resulting in a 9.55% potassium solution concentration. Results. The patient developed warmness of the lower limbs, tachycardia, hypertension, intense pruritus on the chest, agitation, exacerbation of sensory and motor blocks, and respiratory failure secondary to pulmonary edema, requiring ventilatory support. Total recovery was observed after 24 hours. Conclusions. Epidurally injected potassium leads to severe clinical manifestations caused by autonomic dysfunction, spinal cord irritation, and possible release of histamine. Despite continuous recommendations, ampule misidentification still happens in hospitals, frequently leading to serious accidents.
Resumo:
Bilateral common carotid occlusion (BCO) over a period of 60 s in conscious rats produces a biphasic presser response, consisting of an early (peak) and late (plateau) phase. In this study we investigated 1) the effects of lesions of the commissural nucleus of the solitary tract (commNTS) on the cardiovascular responses produced by BCO in conscious rats and 2) the autonomic and humoral mechanisms activated to produce the presser response to BCO in sham- and commNTS-lesioned rats. Both the peak and plateau of the presser response produced by BCO increased in commNTS-lesioned rats despite the impairment of chemoreflex responses induced by intravenous potassium cyanide. In sham rats sympathetic blockade with intravenous prazosin and metoprolol, but not vasopressin receptor blockade with the Manning compound, reduced both components of BCO. In commNTS-lesioned rats the sympathetic blockade or vasopressin receptor blockade reduced both components of BCO. The results showed 1) the sympathetic nervous system, but not vasopressin, is important for the presser response to BCO during 60 s in conscious sham rats; 2) in commNTS-lesioned rats, despite chemoreflex impairment, BCO produces an increased presser response dependent on sympathetic activity associated with vasopressin release; and 3) the increment in the presser response to BCO in commNTS-lesioned rats seems to depend only on vasopressin secretion.
Release of intermediate reactive hydrogen peroxide by macrophage cells activated by natural products
Resumo:
By determining the hydrogen peroxide (H2O2) released in cultures of peritoneal macrophage cells from Swiss mice, we evaluated the action of 27 vegetable compounds (pristimerin, tingenone, jatrophone, palustric acid, lupeol, cladrastin, ocoteine, boldine, tomatine, yohimbine, reserpine, escopoletin, esculine, plumericin, diosgenin, deoxyschizandrin, p-arbutin, mangiferin, and others) using a 2 mg/ml solution of each compound (100 mug/well). Macrophages are cells responsible for the development of the immunological response reaction, liberating more than one hundred compounds into the extracellular environment. Among these are the various cytokines and the intermediate compounds of nitrogen (NO) and oxygen (H2O2). This coordinated sequence of biochemical reactions is known as the oxidative burst. When we compared the results with those obtained with zymosan (an important stimulator of H2O2) we observed that the compounds showing the highest activity were substances 2 (tingenone), 16 (reserpine) and 20. Other substances such as compounds 1, 4, 5, 6, 8, 12, 13, 14, 15, 17, 19, 23, 24, 26, and 27 also showed a certain activity, but with less intensity than the aforementioned ones. Compounds 3, 7, 9, 10, 11, 18, 21, 22 and 25 presented no activity. These results suggest that natural products (mainly tingenone and reserpine and others) with different chemical structures are strong immunological modulators. However, further tests are needed to determine the 'oxidative burst' in future studies.
Resumo:
Silica-based sol-gel waveguides activated by Er3+ ions are attractive materials for integrated optic devices. 70SiO(2)-30HfO(2) planar waveguides, doped with Er3+ concentrations ranging from 0.01 to 4 mol%, were prepared by sol-get route. The films were deposited on v-SiO2 and silica-on-silicon substrates, using dip-coating technique. The waveguides show a homogeneous surface morphology, high densification degree and uniform refractive index across the thickness. Emission in the C-telecommunication band was observed at room temperature for ill the samples upon excitation at 980 nm. The shape is found to be almost independent on erbium content, with a FWHM between 44 and 48 nm. The I-4(13/2) level decay curves presented a single-exponential profile, with a lifetime ranging between 1.1 and 6.7 ms, depending on the erbium concentration. The waveguide deposited on silica-on-silicon substrate supports one single propagation mode at 1.5 mum with a confinement coefficient of 0.85, and a losses of about 0.8 dB/cm at 632.8 nm. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The structure and the ionic conduction properties of siloxane-poly(oxypropylene) (PPO) hybrids doped with different potassium salts (KCF3SO3, KI, KClO4 and KNO2) are reported for two polymer molecular weights (300 and 4000 g/mol), labelled PPO300 and PPO4000, respectively. The doping concentration, related to the concentration of the ether type oxygen of the PPO chain, is the same whatever the salt and verifies [O]/[K] = 20. Ionic room temperature conductivity shows the highest value for the KCF3SO3 doped PPO4000 hybrid (4 x 10(-7)Omega(-1).cm(-1)). The structure of these hybrids was investigated by X-ray powder diffraction (XRPD) and X-ray absorption spectroscopy (EXAFS and XANES) at the potassium K-edge (3607 eV). XRPD results show that the hybrid matrix is always amorphous and the formation of secondary potassium phases is observed for all the samples, except for the KCF3SO3 doped PPO4000 hybrid. EXAFS results evidence a good correlation between the ionic conductivity and the presence of oxygen atoms as first neighbours around potassium.
Resumo:
A greenhouse experiment studied the effect of potassium fertilization on soybean (Glycine max L. Merrill) root morphology and on K absorption by six soybean cultivars of different maturation groups and growth habits. The Plants were grown up to 70 days after plant emergence, in pots containing 6.0 kg of soil. In the absence of K, no significant difference in K absorption was observed among the cultivars or in root length and surface, but root mean radius was correlated to K absorption. Differences in K absorption were not associated with root characteristics in the presence of K fertilization. Physiological adjustments in K uptake, as well as K availability in the soil, were more important in soybean nutrition than were morphological adjustments in the root system. The results were not associated with plant growth habit or with maturation group.