935 resultados para Abdomen diseases
Resumo:
Heme, iron (Fe) protoporphyrin IX, functions as a prosthetic group in a range of hemoproteins essential to support life under aerobic conditions. The Fe contained within the prosthetic heme groups of these hemoproteins can catalyze the production of reactive oxygen species. Presumably for this reason, heme must be sequestered within those hemoproteins, thereby shielding the reactivity of its Fe-heme. However, under pathologic conditions associated with oxidative stress, some hemoproteins can release their prosthetic heme groups. While this heme is not necessarily damaging per se, it becomes highly cytotoxic in the presence of a range of inflammatory mediators such as tumor necrosis factor. This can lead to tissue damage and, as such, exacerbate the pathologic outcome of several immune-mediated inflammatory conditions. Presumably, targeting "free heme" may be used as a therapeutic intervention against these diseases.
Resumo:
Poster presented at the First international Congress of CiiEM “From Basic Sciences to Clinical Research”, 27-28 November 2015, Egas Moniz, Caparica, Portugal.
Resumo:
In this consensus document we summarize the current knowledge on major asthma, rhinitis, and atopic dermatitis endotypes under the auspices of the PRACTALL collaboration platform. PRACTALL is an initiative of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology aiming to harmonize the European and American approaches to best allergy practice and science. Precision medicine is of broad relevance for the management of asthma, rhinitis, and atopic dermatitis in the context of a better selection of treatment responders, risk prediction, and design of disease-modifying strategies. Progress has been made in profiling the type 2 immune response-driven asthma. The endotype driven approach for non-type 2 immune response asthma, rhinitis, and atopic dermatitis is lagging behind. Validation and qualification of biomarkers are needed to facilitate their translation into pathway-specific diagnostic tests. Wide consensus between academia, governmental regulators, and industry for further development and application of precision medicine in management of allergic diseases is of utmost importance. Improved knowledge of disease pathogenesis together with defining validated and qualified biomarkers are key approaches to precision medicine.
Resumo:
One to two percent of all children are born with a developmental disorder requiring pediatric hospital admissions. For many such syndromes, the molecular pathogenesis remains poorly characterized. Parallel developmental disorders in other species could provide complementary models for human rare diseases by uncovering new candidate genes, improving the understanding of the molecular mechanisms and opening possibilities for therapeutic trials. We performed various experiments, e.g. combined genome-wide association and next generation sequencing, to investigate the clinico-pathological features and genetic causes of three developmental syndromes in dogs, including craniomandibular osteopathy (CMO), a previously undescribed skeletal syndrome, and dental hypomineralization, for which we identified pathogenic variants in the canine SLC37A2 (truncating splicing enhancer variant), SCARF2 (truncating 2-bp deletion) and FAM20C (missense variant) genes, respectively. CMO is a clinical equivalent to an infantile cortical hyperostosis (Caffey disease), for which SLC37A2 is a new candidate gene. SLC37A2 is a poorly characterized member of a glucose-phosphate transporter family without previous disease associations. It is expressed in many tissues, including cells of the macrophage lineage, e.g. osteoclasts, and suggests a disease mechanism, in which an impaired glucose homeostasis in osteoclasts compromises their function in the developing bone, leading to hyperostosis. Mutations in SCARF2 and FAM20C have been associated with the human van den Ende-Gupta and Raine syndromes that include numerous features similar to the affected dogs. Given the growing interest in the molecular characterization and treatment of human rare diseases, our study presents three novel physiologically relevant models for further research and therapy approaches, while providing the molecular identity for the canine conditions.