1000 resultados para ARNDT-EISTERT SYNTHESIS
Resumo:
Coordination-driven self-assembly of 1,3,5-benzenetricarboxylate (tma; 1) and oxalato-bridged p-cymeneruthenium(II) building block Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (2) affords an unusual octanuclear incomplete prism Ru-8(eta(6)-p-cymene)(8)(tma)(2)(mu-eta(4)-C2O4)(2)(OMe)(4)](O3SCF3)( 2) (3), which exhibits a remarkable shape-selective binding affinity for neutral phenolic compounds via hydrogen-bonding interactions (p-cymene = p-(PrC6H4Me)-Pr-i). Such a binding was confirmed by single-crystal X-ray diffraction analysis using 1,3,5-trihydroxybenzene as an analyte.
Resumo:
Four new neutral copper-azido polymers Cu-6(N-3)(12)(aem)(2)](n)(1), Cu-6(N-3)(12)(dmeen)(2)(H2O)(2)](n) (2), Cu-6(N-3)(12)(N,N'-dmen)(2)](n) (3), and Cu-6(N-3)(12)(hmpz)(2)](n) (4) aem = 4-(2-aminoethyl)morpholine; dmeen = N,N-dimethyl-N'-ethylethylenediamine; N,N'-dmen = N,N'-dimethylethylenediamine and hmpz = homopiperazine] have been synthesized by using 0.33 mol equiv of the chelating diamine ligands with Cu(NO3)(2)center dot 3H(2)O/CuCl2 center dot 2H(2)O and an excess of NaN3. Single crystal X-ray structures show that the basic unit of these complexes, especially 1-3, contains very similar Cu-6(II) building blocks. But the overall structures of these complexes vary widely in dimensionality. While 1 is three-dimensional (3D) in nature, 2 and 3 have a two-dimensional (2D) arrangement (with different connectivity) and 4 has a one-dimensional (1D) structure. Cryomagnetic susceptibility measurements over a wide range of temperature exhibit dominant ferromagnetic behavior in all the four complexes. The experimental susceptibility data have been analyzed by some theoretical model equations.
Resumo:
We report a simple and rapid process for the room-temperature synthesis of gold nanoparticles using tannic acid, a green reagent, as both the reducing and stabilising agent. We systematically investigated the effect of pH on the size distribution of nanoparticles synthesized. Based on induction time and zeta- potential measurements, we show that particle size distribution is controlled by a fine balance between the rates of reduction (determined by the initial pH of reactants) and coalescence (determined by the pH of the reaction mixture) in the initial period of growth. This insight led to the optimal batch process for size-controlled synthesis of 2-10 nm gold nanoparticles - slow addition (within 10 minutes) of chloroauric acid into tannic acid.
Resumo:
Research on conducting polymers, organic light emitting diodes and organic solar cells has been an exciting field for the past decade. The challenge with these organic devices is the long term stability of the active material. Organic materials are susceptible to chemical degradation in the presence of oxygen and moisture. The sensitivity of these materials towards oxygen and moisture makes it imperative to protect them by encapsulation. Polymer nanocomposites can be used as encapsulation materials in order to prevent material degradation. In the present work, amine functionalized alumina was used as a cross-linking and reinforcing material for the polymer matrix in order to fabricate the composites to be used for encapsulation of devices. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Raman spectroscopy were used to elucidate the surface chemistry. Thermogravimetric analysis techniques and CHN analysis were used to quantify grafting density of amine groups over the surface of the nanoparticles. Mechanical characterizations of the composites with various loadings were carried out with dynamic mechanical analyzer. It was observed that the composites have good thermal stability and mechanical flexibility, which are important for an encapsulant. The morphology of the composites was evaluated using scanning electron microscopy and atomic force microscopy.
Resumo:
Total syntheses of (±)-1,4-dimethoxy-6,6-dimethyl-B-norestra-1,3,5(10)-trien-17?-ol(11a), (±)-2,3-dimethoxy-6,6-dimethyl-B-norestra-1,3,5(10)-trien-17?-ol (11b), and (±)-3-methoxy-6,6-dimethyl-B-norestra-1,3,5(10)trien-17?-ol (11c), have been carried out starting from 4,7-dimethoxy-3,3-dimethylindan-1-one (1), 5,6-dimethoxy-3,3-dimethylindan-1-one (2), and 4?-methoxy-3-methylbut-2-enophenone (4), respectively. Generally, it is found that the intermediate 6,6-dimethyl-B-norestra-1,3,5(10),8-tetraen-17?-ols (10), on lithium�liquid ammonia reduction, yield a mixture of 8?,9?- and 8?,9?-trienols, (11) and (12) respectively, in the ratio 1 : 1. This is due to the comparable stabilities of these two isomers. However, the reduction carried out in presence of aniline affords a higher percentage of the 8?,9?-trienol (11). The assignment of configurations is made by chemical and 1H n.m.r. analysis. Catalytic hydrogenation of the tetraenols (10) is shown to proceed via initial isomerisation to the corresponding 6,6-dimethyl-B-norestra-1,3,5(10),9(11)-tetraen-17?-ols (26), followed by hydrogenation from the ?-side to give, exclusively, the 8?,9?-trienols (12).