800 resultados para APENDICULAR SKELETON
Développement des bétons autoplaçants à faible teneur en poudre, Éco-BAP: formulation et performance
Resumo:
Abstract : Although concrete is a relatively green material, the astronomical volume of concrete produced worldwide annually places the concrete construction sector among the noticeable contributors to the global warming. The most polluting constituent of concrete is cement due to its production process which releases, on average, 0.83 kg CO[subscript 2] per kg of cement. Self-consolidating concrete (SCC), a type of concrete that can fill in the formwork without external vibration, is a technology that can offer a solution to the sustainability issues of concrete industry. However, all of the workability requirements of SCC originate from a higher powder content (compared to conventional concrete) which can increase both the cost of construction and the environmental impact of SCC for some applications. Ecological SCC, Eco-SCC, is a recent development combing the advantages of SCC and a significantly lower powder content. The maximum powder content of this concrete, intended for building and commercial construction, is limited to 315 kg/m[superscript 3]. Nevertheless, designing Eco-SCC can be challenging since a delicate balance between different ingredients of this concrete is required to secure a satisfactory mixture. In this Ph.D. program, the principal objective is to develop a systematic design method to produce Eco-SCC. Since the particle lattice effect (PLE) is a key parameter to design stable Eco-SCC mixtures and is not well understood, in the first phase of this research, this phenomenon is studied. The focus in this phase is on the effect of particle-size distribution (PSD) on the PLE and stability of model mixtures as well as SCC. In the second phase, the design protocol is developed, and the properties of obtained Eco-SCC mixtures in both fresh and hardened states are evaluated. Since the assessment of robustness is crucial for successful production of concrete on large-scale, in the final phase of this work, the robustness of one the best-performing mixtures of Phase II is examined. It was found that increasing the volume fraction of a stable size-class results in an increase in the stability of that class, which in turn contributes to a higher PLE of the granular skeleton and better stability of the system. It was shown that a continuous PSD in which the volume fraction of each size class is larger than the consecutive coarser class can increase the PLE. Using such PSD was shown to allow for a substantial increase in the fluidity of SCC mixture without compromising the segregation resistance. An index to predict the segregation potential of a suspension of particles in a yield stress fluid was proposed. In the second phase of the dissertation, a five-step design method for Eco-SCC was established. The design protocol started with the determination of powder and water contents followed by the optimization of sand and coarse aggregate volume fractions according to an ideal PSD model (Funk and Dinger). The powder composition was optimized in the third step to minimize the water demand while securing adequate performance in the hardened state. The superplasticizer (SP) content of the mixtures was determined in next step. The last step dealt with the assessment of the global warming potential of the formulated Eco-SCC mixtures. The optimized Eco-SCC mixtures met all the requirements of self-consolidation in the fresh state. The 28-day compressive strength of such mixtures complied with the target range of 25 to 35 MPa. In addition, the mixtures showed sufficient performance in terms of drying shrinkage, electrical resistivity, and frost durability for the intended applications. The eco-performance of the developed mixtures was satisfactory as well. It was demonstrated in the last phase that the robustness of Eco-SCC is generally good with regards to water content variations and coarse aggregate characteristics alterations. Special attention must be paid to the dosage of SP during batching.
Resumo:
Hydrogen is considered as an appealing alternative to fossil fuels in the pursuit of sustainable, secure and prosperous growth in the UK and abroad. However there exists a persisting bottleneck in the effective storage of hydrogen for mobile applications in order to facilitate a wide implementation of hydrogen fuel cells in the fossil fuel dependent transportation industry. To address this issue, new means of solid state chemical hydrogen storage are proposed in this thesis. This involves the coupling of LiH with three different organic amines: melamine, urea and dicyandiamide. In principle, thermodynamically favourable hydrogen release from these systems proceeds via the deprotonation of the protic N-H moieties by the hydridic metal hydride. Simultaneously hydrogen kinetics is expected to be enhanced over heavier hydrides by incorporating lithium ions in the proposed binary hydrogen storage systems. Whilst the concept has been successfully demonstrated by the results obtained in this work, it was observed that optimising the ball milling conditions is central in promoting hydrogen desorption in the proposed systems. The theoretical amount of 6.97 wt% by dry mass of hydrogen was released when heating a ball milled mixture of LiH and melamine (6:1 stoichiometry) to 320 °C. It was observed that ball milling introduces a disruption in the intermolecular hydrogen bonding network that exists in pristine melamine. This effect extends to a molecular level electron redistribution observed as a function of shifting IR bands. It was postulated that stable phases form during the first stages of dehydrogenation which contain the triazine skeleton. Dehydrogenation of this system yields a solid product Li2NCN, which has been rehydrogenated back to melamine via hydrolysis under weak acidic conditions. On the other hand, the LiH and urea system (4:1 stoichiometry) desorbed approximately 5.8 wt% of hydrogen, from the theoretical capacity of 8.78 wt% (dry mass), by 270 °C accompanied by undesirable ammonia and trace amount of water release. The thermal dehydrogenation proceeds via the formation of Li(HN(CO)NH2) at 104.5 °C; which then decomposes to LiOCN and unidentified phases containing C-N moieties by 230 °C. The final products are Li2NCN and Li2O (270 °C) with LiCN and Li2CO3 also detected under certain conditions. It was observed that ball milling can effectively supress ammonia formation. Furthermore results obtained from energetic ball milling experiments have indicated that the barrier to full dehydrogenation between LiH and urea is principally kinetic. Finally the dehydrogenation reaction between LiH and dicyandiamide system (4:1 stoichiometry) occurs through two distinct pathways dependent on the ball milling conditions. When ball milled at 450 RPM for 1 h, dehydrogenation proceeds alongside dicyandiamide condensation by 400 °C whilst at a slower milling speed of 400 RPM for 6h, decomposition occurs via a rapid gas desorption (H2 and NH3) at 85 °C accompanied by sample foaming. The reactant dicyandiamide can be generated by hydrolysis using the product Li2NCN.
Resumo:
O presente trabalho consiste na apresentação da diversidade de seláceos do Farol das Lagostas pertencente à Bacia do Cuanza. Os condrichthyes são componentes comuns da fauna aquática desde o Paleozoico. No entanto, devido à natureza cartilaginosa do esqueleto, o registo paleontológico dos mesmos restringe-se, basicamente, às partes mineralizadas como dentes, dentículos dérmicos e espinhas cefálicas O lugar Farol das Lagostas contém uma fauna de seláceos relativamente rica e variada, representada neste estudo por cerca de 1.000 dentes isolados, além de outras peças esqueléticas. Foram identificados e descritos quarenta e quatro taxa, pertencentes às seguintes ordens: Hexanchiformes, Squaliformes, Pristiophoriformes, Squatiniformes, Lamniformes, Carcharhiniformes, Rajiformes e Myliobatiformes. Trata-se de uma diversidade faunística cuja maioria dos géneros possui representantes atuais. Os Carcharhiniformes representam 53% dos taxa identificados. Estão representadas as famílias Scyliorhinidae, Triakidae, Hemigaleidae, Carcharhinidae e Sphyrnidae, com 18 espécies. Verifica-se a presença de formas bentónicas e nectónicas que indicam condições térmicas moderadas, quentes e tropicais a temperadas, que habitam frequentemente zonas costeiras. A relação faunística identificada corresponde a uma zona litoral. Ora, considerando o conjunto de dados em face da presença de fauna pelágica e dos grandes predadores, especialmente Isurus hastalis e Carcharocles megalodon, podemos admitir que existisse então um Golfo relativamente largo de uma faixa Atlântica aberta (Antunes & Balbino, 2004); ABSTRACT: Selachians from Farol the Lagostas (Cuanza Basin, Angola) The present work consists of the presentation of diversity of selachians from Farol das Lagostas, which belongs to the Cuanza Basin. The condrichthyes are a part of aquatic fauna since the Paleozoic. However, due to the nature of the cartilaginous skeleton, the paleontological registration of the same ones is restricted to mineralized parts like teeth, dermal denticles and cephalic spines. The of formation, Farol das Lagostas has a fauna of selachian relatively rich and diverse, represented in this study for around 1.000 isolated teeth, and other skeletal parts. Forty four taxa were described and identified, belonging to the following orders: Hexanchiformes, Squaliformes, Pristiophoriformes, Squatiniformes, Lamniformes, Carcharhiniformes, Rajiformes e Myliobatiformes. It’s a faunal diversity whose most genera have current representatives. The Carcharhiniformes represente 53% of the identified taxa. The represented families are Scyliorhinidae, Triakidae, Hemigaleidae, Carcharhinidae e Sphyrnidae, with 18 species. There is presence of benthic and nektonic forms that indicate moderate thermal conditions, the temperate and tropical hot, often inhabit coastal areas. The identified faunal relation corresponds to a coastal zone. So, considering the data set, due to the presence of pelagic fauna and large predators, especially Isurus hastalis e Carcharocles megalodon, we can admit that then there was a relatively large Gulf of open Atlantic range (Antunes & Balbino, 2004).
Resumo:
Axial spondyloarthritis (AxSpA) is an inflammatory disease affecting the axial skeleton. The infiltrate of T-cells in the structural lesions has been found to contribute to bone remodeling, but consensus relating the functional contribution of different T-cell subsets to pathogenesis has not been reached yet. Aim of the project was to characterize circulating T-cells and their homing markers from axSpA patients in order to identify cellular populations that could migrate to inflamed tissues and be implicated in axSpA. We found an altered proportion of circulating naïve and memory T-cells in axSpA patients, and a skew in favor of CD8+ T-cells expressing the chemokine receptor CCR4. Since CCL17 and CCL22, the two ligands for CCR4, are found to be elevated in the sera of axSpA patients, we investigated in details the role of CD8+CCR4+ T cells in axSpA. Our data showed that circulating CD8+CCR4+ T-cells display an effector memory phenotype and express homing markers for tissues that are target of the disease. Noteworthy, CD8+CCR4+ T cells from axSpA patients were activated, expressed markers of proliferation and acquired a cytotoxic phenotype, as demonstrated by the increased production of granzyme and perforin. CD8+CCR4+ T cells from axSpA patients upregulate the transcription of genes involved in bone mineralization and downregulate genes involved in osteoclast differentiation, indicating their possible involvement in bone remodeling. Furthermore, CD8+CCR4+ T cells stimulated with PMA and ionomycin were able to produce and release TNF and IL-8, two cytokines involved in osteoclastogenesis, indicating that CD8+CCR4+ T-cells after stimulation would be able to promote osteoclasts differentiation and neutrophils recruitment. Taken together our data suggest that CD8+CCR4+ T cells might exert a pathogenic role in axSpA, by releasing mediators of tissue damage, bone remodeling and recruitment of other pro inflammatory cells.
Resumo:
The concepts of circular economy and sustainability are the basis of the present experimental research that seeks to reduce the environmental impact of traditional road construction materials. This study mainly focuses on the development and the chemo-mechanical characterization of bitumen extenders containing rubber (R) from end-of-life tyres (ELTs) and re-refined engine oil bottoms (REOBs) for the production of innovative and eco-friendly extended bitumens (i.e. bituminous binders containing 25%wt. of recycled products) and asphalt mixtures. In order to create more sustainable asphalt mixes, also recycled aggregates are used for partial replacement of virgin natural aggregates in the aggregate skeleton. The experimental program encompassed five successive steps: (i) the evaluation of physicochemical properties of R and REOB, (ii) the definition of the optimal extenders by the development of a new protocol and their characterizations, (iii) the realization and investigation of the chemo-rheological responses of the extended bitumens at different boundary conditions, (iv) the assessment of the effectiveness of analytical method to predict the rheological parameters of extended bitumens and, finally, (v) the analysis of the mechanical performances of the corresponding asphalt mixtures. A standard 50/70 penetration grade bitumen was chosen as a reference material and the main constituent of the innovative bituminous products. The results of this study underlined the importance of material characterization. The incorporation of R-REOB extenders strongly affects the chemo-rheological responses of the resulting extended bitumens and asphalt mixtures overall the boundary conditions. While the presence of R and the consequent formation of a polymer network improves the elasticity of the final products, especially at high test temperatures; the addition of REOB, softens the bituminous binders and asphalt mixes increasing their response at low test temperatures. Nonetheless, the use of recycled products increased the susceptibility of bituminous material under damaging conditions, which would need further investigations.