894 resultados para AMMONIUM-SULFATE PARTICLES
Resumo:
The first examples of sigmatropic rearrangements of ene-endo-spirocyclic, tetrahydropyridine-derived ammonium ylids are reported. Thus, spiro[6.7]-ylids rearrange primarily by a [2,3]-pathway, whereas the analogous [6.6]-ylids rearrange by [1,2]- and [2,3]-mechanisms in roughly equal proportions. This method serves as a rapid entry to the core of a range of alkaloids bearing a pyrrolo[1,2-a]azepine or octahydroindolizidine nucleus.
Resumo:
Sigmatropic rearrangement of tetrahydropyridine-derived ammonium is a valuable method for the preparation of substituted prolines. These reaction normally require elevated temperatures to proceed, but bicyclic tetrahydropyridine-like ylid I undergoes rearrangement at -15 degrees C; the extra rigidity of the azabicyclo[3.3.0]octene system preorganizes the transition state and lowers the activation energy for rearrangement.
Resumo:
[2,3]-Sigmatropic rearrangements of allylic ammonium ylids derived from glycinoylcamphorsultams are highly selective in terms of relative and absolute stereocontrol only when acyclic alkenes are present. When chiral esters of ylids derived from N-methyltetrahydro-pyridine ('NMTP') undergo rearrangement, the reactions show exclusive cis-stereoselectivity but the products are obtained with virtually no absolute stereocontrol. These observations support the notion that sigmatropic rearrangements of N-chiral ammonium ylids are controlled by nitrogen stereogenicity. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The first examples of highly enantioselective [2,3]-sigmatropic rearrangements of acyclic allylic ammonium ylids are reported. Thus, a range of N-{2‘-[(N‘-allyl-N‘,N‘-dialkyl)ammonium]}acetyl camphor sultams undergo rearrangement at 0 °C in DME solution with high diastereofacial control (up to 99:1 dr) to give allylglycines in generally high yield. The power of the method has been demonstrated in a rapid and efficient synthesis of (R)-allyl glycine.
Resumo:
When wheat was grown under conditions of severe sulfate depletion, dramatic increases in the concentration of free asparagine were found in the grain of up to 30 times as compared to samples receiving the normal levels of sulfate fertilizer. The effect was observed both in plants grown in pots, where the levels of nutrients were carefully controlled, and in plants grown in field trials on soil with poor levels of natural nutrients where sulfate fertilizer was applied at levels from 0 to 40 kg sulfur/Ha. Many of the other free amino acids were present at higher levels in the sulfate-deprived wheat, but the levels of free glutamine showed increases similar to those observed for asparagine. In baked cereal products, asparagine is the precursor of the suspect carcinogen acrylamide, and when flours from the sulfate-deprived wheat were heated at 160 degrees C for 20 min, levels of acrylamide between 2600 and 5200 mu g/kg were found as compared to 600-900 mu g/kg in wheat grown with normal levels of sulfate fertilization.
Resumo:
To examine how sulfur deprivation may affect acrylamide formation in cooked potatoes, three varieties of potato were grown under conditions of either severe sulfur deprivation or an adequate supply of sulfur. In all three varieties sulfur deprivation led to a decrease in acrylamide formation, even though the levels of sugars, which are acrylamide precursors, were higher in tubers of the sulfur-deprived plants. In one variety the concentration of free asparagine, the other precursor for acrylamide, was also higher. There was a very close correlation between the concentration of asparagine in the tubers expressed as a proportion of the total free amino acid pool and the formation of acrylamide upon cooking, whereas sugars were poorly correlated with acrylamide. In potatoes, where concentrations of sugars are usually limiting, competition between asparagine and other amino acids participating in the Maillard reaction may be a key determinant of the amount of acrylamide that is formed during processing.
Resumo:
Information on the distribution and behavior of C fractions in soil particle sizes is crucial for understanding C dynamics in soil. At present little is known about the behavior of the C associated with silt-size particles. We quantified the concentrations, distribution, and enrichment of total C (TC), readily oxidizable C (ROC), hotwater- extractable C (HWC), and cold-water-extractable C (CWC) fractions in coarse (63–20-mm), medium (20–6.3-mm), and fine (6.3–2-mm) silt-size subfractions and in coarse (2000–250 mm) and fine (250–63 mm) sand and clay (<2-mm) soil fractions isolated from bulk soil (<2 mm), and 2- to 4-mm aggregate-size fraction of surface (0–25 cm) and subsurface (25–55 cm) soils under different land uses. All measured C fractions varied significantly across all soil particle-size fractions. The highest C concentrations were associated with the <20-mm soil fractions and peaked in the medium (20–6.3-mm) and fine (6.3–2-mm) silt subfractions in most treatments. Carbon enrichment ratios (ERC) revealed the dual behavior of the C fractions associated with the medium silt-size fraction, demonstrating the simultaneous enrichment of TC and ROC, and the depletion of HWC and CWC fractions. The medium silt (20–6.3-mm) subfraction was identified in this study as a zone where the associated C fractions exhibit transitory qualities. Our results show that investigating subfractions within the silt-size particle fraction provides better understanding of the behavior of C fractions in this soil fraction.
Resumo:
The [2,3]-sigmatropic rearrangement of tetrahydropyridine-derived ammonium ylids is a valuable method for the preparation of substituted pyrrolidine carboxylates. The presence of an allylic substituent does not intrinsically reduce the yield of rearrangements, and the diastereoselectivity of rearrangement is related to the structure of the diazo reactant. The method represents a very rapid means of accessing complex pyrrolidines, as shown by preparation of a precursor to the core of lactacystin.
Resumo:
The effects of nano-scale and micro-scale zerovalent iron (nZVI and mZVI) particles on general (dehydrogenase and hydrolase) and specific (ammonia oxidation potential, AOP) activities mediated by the microbial community in an uncontaminated soil were examined. nZVI (diameter 12.5 nm; 10 mg gÿ1 soil)apparently inhibited AOP and nZVI and mZVI apparently stimulated dehydrogenase activity but had minimal influence on hydrolase activity. Sterile experiments revealed that the apparent inhibition of AOP could not be interpreted as such due to the confounding action of the particles, whereas, the nZVIenhanced dehydrogenase activity could represent the genuine response of a stimulated microbial population or an artifact of ZVI reactivity. Overall, there was no evidence for negative effects of nZVI or mZVI on the processes studied. When examining the impact of redox active particles such as ZVI on microbial oxidation–reduction reactions, potential confounding effects of the test particles on assay conditions should be considered.
Resumo:
We performed atomistic molecular dynamics simulations of anionic and cationic micelles in the presence of poly(ethylene oxide) (PEO) to understand why nonionic water-soluble polymers such as PEO interact strongly with anionic micelles but only weakly with cationic micelles. Our micelles include sodium n-dodecyl sulfate (SDS), n-dodecyl trimethylammonium chloride (DTAC), n-dodecyl ammonium chloride (DAC), and micelles in which we artificially reverse the sign of partial charges in SDS and DTAC. We observe that the polymer interacts hydrophobically with anionic SDS but only weakly with cationic DTAC and DAC, in agreement with experiment. However, the polymer also interacts with the artificial anionic DTAC but fails to interact hydrophobically with the artificial cationic SDS, illustrating that large headgroup size does not explain the weak polymer interaction with cationic micelles. In addition, we observe through simulation that this preference for interaction with anionic micelles still exists in a dipolar "dumbbell" solvent, indicating that water structure and hydrogen bonding alone cannot explain this preferential interaction. Our simulations suggest that direct electrostatic interactions between the micelle and polymer explain the preference for interaction with anionic micelles, even though the polymer overall carries no net charge. This is possible given the asymmetric distribution of negative charges on smaller atoms and positive charges oil larger units in the polymer chain.
Resumo:
We have performed atomistic molecular dynamics simulations of an anionic sodium dodecyl sulfate (SDS) micelle and a nonionic poly(ethylene oxide) (PEO) polymer in aqueous solution. The micelle consisted of 60 surfactant molecules, and the polymer chain lengths varied from 20 to 40 monomers. The force field parameters for PEO were adjusted by using 1,2-dimethoxymethane (DME) as a model compound and matching its hydration enthalpy and conformational behavior to experiment. Excellent agreement with previous experimental and simulation work was obtained through these modifications. The simulated scaling behavior of the PEO radius of gyration was also in close agreement with experimental results. The SDS-PEO simulations show that the polymer resides on the micelle surface and at the hydrocarbon-water interface, leading to a selective reduction in the hydrophobic contribution to the solvent-accessible surface area of the micelle. The association is mainly driven by hydrophobic interactions between the polymer and surfactant tails, while the interaction between the polymer and sulfate headgroups on the micelle surface is weak. The 40-monomer chain is mostly wrapped around the micelle, and nearly 90% of the monomers are adsorbed at low PEO concentration. Simulations were also performed with multiple 20-monomer chains, and gradual addition of polymer indicates that about 120 monomers are required to saturate the micelle surface. The stoichiometry of the resulting complex is in close agreement with experimental results, and the commonly accepted "beaded necklace" structure of the SDS-PEO complex is recovered by our simulations.
Resumo:
Background: Compared with the postprandial events after a single meal, different events occur when a second meal is ingested 4–6 h after a first meal. There is a rapid appearance of chylomicrons in the circulation carrying fat ingested with the first meal, with a peak 1 h after the second meal. Objective: Our goal was to examine whether different dietary oils have effects on the storage of triacylglycerol as a result of differences in their digestion, absorption, and incorporation into chylomicrons. Design: A single-blind, randomized, within-subject crossover design was used to study the effects of palm oil, safflower oil, a mixture of fish and safflower oil, and olive oil on postprandial apolipoprotein (apo) B-48, retinyl ester, and triacylglycerol in the Sf > 400 fraction with the use of a sequential meal protocol. Results: For triacylglycerol, retinyl ester, and apo B-48, the time to reach peak concentration was significantly earlier after the second meal than after the first meal (P < 0.005). This was apparent with each of the dietary oils. The pattern of the apo B-48 response differed significantly among the dietary oils, with olive oil resulting in higher concentrations after both meals (P = 0.003). The ratio of triacylglycerol to apo B-48 was significantly lower after olive oil feeding than after feeding with the other oils (P = 0.02). Conclusions: The rapid entry of chylomicrons after the ingestion of a second meal 5 h after a first meal was seen with all of the oils investigated. The short-term ingestion of olive oil produced more chylomicrons than did the other dietary oils, which may have been due to differences in the metabolic handling of olive oil within the gut.
Resumo:
This paper describes the use of an antiserum, specific for apolipoprotein (apo) B-48, in a competitive, enzyme-linked immunosorbent assay (ELISA) for apo B-48 in triacylglycerol-rich lipoprotein (TRL) fractions prepared from fasting and post-prandial plasma samples. Previously we showed the antiserum to act as an effective immunoblotting agent following sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Its use in this ELISA indicates that the antiserum recognises the C-terminal region of the protein on the surface of lipoprotein particles. The ELISA had a sensitivity of less than 37 ng/ml and intra- and inter-assay coefficients of variation of 3.8% and 8.6%, respectively. There was no cross-reaction in the ELISA against serum albumin, ovalbumin, thyroglobulin, or apo B-100 (purified by immunoaffinity chromatography), and high lipid concentrations (as Intralipid) did not interfere. A low density lipoprotein fraction reacted in the ELISA but SDS-PAGE-Western blot analysis confirmed the presence, in the fraction, of a small amount of apo B-48, indicating the existence of low density dietary-derived lipoprotein particles. ELISA and SDS-PAGE-Western blot analysis were used to measure apo B-48 in 12 series of postprandial samples collected from 4 diabetic and 8 normal subjects, following test meals of varying fat content. The mean correlation between the two methods was r = 0.74. The mean fasting concentration of apo B-48 in the TRL fractions from 15 healthy men was 0.46 μg/ml of plasma.