932 resultados para 670702 Synthetic resins and rubber
Resumo:
Several natural and synthetic supports have been assessed for their efficiency for enzyme immobilization. Synthetic polymer materials are prepared by chemical polymerization using various monomers. As a kind of important carrier, synthetic polymer materials exhibit the advantages of good mechanical rigidity, high specific surface area, inertness to microbial attack, easy to change their surface characteristics, and their potential for bringing specific functional group according to actual needs. Hence, they have been widely investigated and used for enzyme immobilization. When it comes to the natural polymer materials, much attention has been paid to cellulose and other natural polymer materials owing to their wide range of sources, easy modification, nontoxic, and pollution-free, with a possibility of introducing wide variety of functional groups and good biocompatible properties. In this work report the use of synthetic polymer, polypyrrole and its derivatives and natural polymers coconut fiber and sugarcane bagasse as supports for Diastase α- amylase immobilization. An attempt was also made to functionalize both synthetic and natural polymers using Amino-propyl triethoxysilane. Supports and their immobilized forms were characterized via FT-IR, TG, SEM, XRD, BET and EDS techniques. Immobilization parameters were also optimized so as to prepare stable immobilized biocatalyst for starch hydrolysis.
Resumo:
The next generations of both biological engineering and computer engineering demand that control be exerted at the molecular level. Creating, characterizing and controlling synthetic biological systems may provide us with the ability to build cells that are capable of a plethora of activities, from computation to synthesizing nanostructures. To develop these systems, we must have a set of tools not only for synthesizing systems, but also designing and simulating them. The BioJADE project provides a comprehensive, extensible design and simulation platform for synthetic biology. BioJADE is a graphical design tool built in Java, utilizing a database back end, and supports a range of simulations using an XML communication protocol. BioJADE currently supports a library of over 100 parts with which it can compile designs into actual DNA, and then generate synthesis instructions to build the physical parts. The BioJADE project contributes several tools to Synthetic Biology. BioJADE in itself is a powerful tool for synthetic biology designers. Additionally, we developed and now make use of a centralized BioBricks repository, which enables the sharing of BioBrick components between researchers, and vastly reduces the barriers to entry for aspiring Synthetic Biologists.
Resumo:
Lactoperoxidase (LP) was isolated from whey protein by cation-exchange using Carboxymethyl resin (CM-25C) and Sulphopropyl Toyopearl resin (SP-650C). Both batch and column procedures were employed and the adsorption capacities and extraction efficiencies were compared. The resin bed volume to whey volume ratios were 0.96:1.0 for CM-25C and ≤ 0.64:1.0 for SP-650 indicating higher adsorption capacity of SP-650 compared to CM-25C. The effluent LP activity depended on both the enzyme activity in the whey and the amount of whey loaded on the column within the saturation limits of the resin. The percentage recovery was high below the saturation point and fell off rapidly with over-saturation. While effective recovery was achieved with column extraction procedures, the recovery was poor in batch procedures. The whey-resin contact time had little impact on the enzyme adsorption. SDS PAGE and HPLC analyses were also carried out, the purity was examined and the proteins characterised in terms of molecular weights. Reversed phase HPLC provided clear distinction of the LP and lactoferrin (LF) peaks. The enzyme purity was higher in column effluents compared to batch effluents, judged on the basis of the clarity of the gel bands and the resolved peaks in HPLC chromatograms.
Resumo:
The introduction of Registration, Evaluation and Authorisation of Chemicals (REACH), requires companies to register and risk assess all substances produced or imported in volumes of >1 tonne per year. Extrapolation methods which use existing data for estimating the effects of chemicals are attractive to industry, and comparative data are therefore increasingly in demand. Data on natural toxic chemicals could be used for extrapolation methods Such as read-across. To test this hypothesis, the toxicity of natural chemicals and their synthetic analogues were compared using standardised toxicity tests. Two chemical pairs: the napthoquinones, juglone (natural) and 1,4-naphthoquinone (synthetic); and anthraquinones, emodin (natural) and quinizarin (synthetic) were chosen, and their comparative effects on the survival and reproduction of collembolans, earthworms, enchytraeids and predatory mites were assessed. Differences in sensitivity between the species were observed with the predatory mite (Hypoaspis aculeifer) showing the least sensitivity. Within the chemical pairs, toxicity to lethal and sub-lethal endpoints was very similar for the four invertebrate species. The exception was earthworm reproduction, which showed differential sensitivity to the chemicals in both naphthoquinone and anthraquinone pairs. Differences in toxicity identified in the present study may be related to degree of exposure and/or subtle differences in the mode of toxic action for the chemicals and species tested. It may be possible to predict differences by identifying functional groups which infer increased or decreased toxicity in one or other chemical. The development of such techniques would enable the use of read-across from natural to synthetic chemicals for a wider group of compounds. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Many different reagents and methodologies have been utilised for the modification of synthetic and biological macromolecular systems. In addition, an area of intense research at present is the construction of hybrid biosynthetic polymers, comprised of biologically active species immobilised or complexed with synthetic polymers. One of the most useful and widely applicable techniques available for functionalisation of macromolecular systems involves indiscriminate carbene insertion processes. The highly reactive and non-specific nature of carbenes has enabled a multitude of macromolecular structures to be functionalised without the need for specialised reagents or additives. The use of diazirines as stable carbene precursors has increased dramatically over the past twenty years and these reagents are fast becoming the most popular photophors for photoaffinity labelling and biological applications in which covalent modification of macromolecular structures is the basis to understanding structure-activity relationships. This review reports the synthesis and application of a diverse range of diazirines in macromolecular systems.
Resumo:
The rapid synthesis of functionalised morpholines and [1,4]-oxazepanes displaying up to three stereocentres, by reductive amination reactions between carbohydrate derived dialdehydes and a range of amines, is described. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A series of self-assembling terminally blocked tripeptides (containing coded amino acids) form gels in various aromatic solvents including benzene, toluene, xylenes at low concentrations. However these tripeptides do not form gels in aliphatic hydrocarbons like n-hexane, cyclohexane, n-decane etc. Morphological studies of the dried gel indicate the presence of an entangled fibrous network, which is responsible for gelation. Differential scanning calorimetric (DSC) studies of the gels produced by peptide 1 clearly demonstrates thermoreversible nature of the gel and tripeptide-solvent complex may be produced during gel formation. FT-IR and H-1 NMR studies of the gels demonstrate that an intermolecular hydrogen-bonding network is formed during gelation. Single crystal X-ray diffraction studies for peptides 1, 2 and 3 have been performed to investigate the molecular arrangement that might be responsible for forming the fibrous network of these self-assembling peptide gelators. It has been found that the morph responsible for gelation of peptides 1, 2 and 3 in benzene is somewhat different from that of its xerogel.
Resumo:
We have described here the self-assembling properties of the synthetic tripeptides Boc-Ala(1)-Aib(2) -Val (3)-OMe 1, BocAla(l)-Aib(2)-Ile(3)-OMe 2 and Boc-Ala(l)-Gly(2)-Val(3)-OMe 3 (Aib=alpha-arnino isobutyric acid, beta-Ala=beta-alanine) which have distorted beta-turn conformations in their respective crystals. These turn-forming tripeptides self-assemble to form supramolecular beta-sheet structures through intermolecular hydrogen bonding and other noncovalent interactions. The scanning electron micrographs of these peptides revealed that these compounds form amyloid-like fibrils, the causative factor for many neurodegenerative diseases including Alzheimer's disease, Huntington's disease and Prion-related encephalopathies. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Previous studies comparing the biokinetics of deuterated natural (RRR) and synthetic (all-rac) α-tocopherol (vitamin E) used a simultaneous ingestion or competitive uptake approach and reported relative bioavailability ratios close to 2:1, higher than the accepted biopotency ratio of 1.36:1. The aim of the current study was to compare the biokinetics of deuterated natural and synthetic vitamin E using a noncompetitive uptake model both before and after vitamin E supplementation in a distinct population. Healthy men (n = 10) carrying the apolipoprotein (apo)E4 genotype completed a randomized crossover study, comprised of two 4-wk treatments with 400 mg/d (RRR-α-tocopheryl and all-rac-α-tocopheryl acetate) with a 12-wk washout period between treatments. Before and after each treatment period, the subjects consumed a capsule containing 150 mg deuterated α-tocopheryl acetate in either the PRR or all-rac form depending on their treatment regimen. Blood was obtained up to 48 h after ingestion, and tocopherols analyzed by LC/MS. After deuterated all-rac administration, plasma deuterated tocopherol maximum concentrations and area under the concentration vs. time curves (AUC) were lower than those following RRR administration. The RRR:all-rac ratios determined from the deuterated biokinetic profiles (maximum concentration; C-max) and AUCs were 1.35:1 &PLUSMN; 0.17 and 1.33:1 &PLUSMN; 0.18, respectively. The 4-wk supplementation with either PRR or all-rac significantly increased plasma a-tocopherol concentrations (P < 0.001), but decreased the plasma response to newly absorbed deuterated RRR or all-rac α-tocopherol. Using a noncompetitive uptake approach, the relative bioavailability of natural to synthetic vitamin E in apoE4 males was close to the currently accepted biopotency ratio of 1.36:1.
Resumo:
We have compared the biokinetics of deuterated natural (RPR) and synthetic (all rac) alpha-tocopherol in male apoE4-carrying smokers and nonsmokers. In a randomized, crossover study subjects underwent two 4-week treatments (400 mg/day) with undeuterated RRR- and all rac-alpha-tocopheryl acetate around a 12-week washout. Before and after each supplementation period subjects underwent a biokinetic protocol (48 h) with 150 mg deuterated RRR- or all rac-alpha-tocopheryl acetate. During the biokinetic protocols, the elimination of endogenous plasma alpha-tocopherol was significantly faster in smokers (P < 0.05). However, smokers had a lower uptake of deuterated RRR than nonsmokers, but there was no difference in uptake of deuterated all rac. The supplementation regimes significantly raised plasma alpha-tocopherol (P < 0.001) with no differences in response between smokers and nonsmokers or between alpha-tocopherol forms. Smokers had significantly lower excretion of alpha-carboxyethyl-hydroxychroman than nonsmokers following supplementation (P < 0.05). Nonsmokers excreted more alpha-carboxyethyl-hydroxychroman following RRR than all rac; however, smokers did not differ in excretion between forms. At baseline, smokers had significantly lower ascorbate (P < 0.01) and higher F(2-)isoprostarres (P < 0.05). F-2-isoprostanes in smokers remained unchanged during the study, but increased in nonsmokers following alpha-tocopherol supplementation. These data suggest that apoE4-carrying smokers and nonsmokers differ in their handling of natural and synthetic alpha-tocopherol. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
A mammalian cell line, J774, was susceptible to both synthetic and natural photosensitising agents after irradiation with long-wave ultraviolet light. Both UV-A light and psoralen did not affect cell growth individually; a reduction in visual confluency was achieved only when psoralen and UV-A light were used in combination. The maximum visual confluency decreased by 55% when 50 ppm psoralen was added to a growing culture and irradiated with UV light for 3 min. Decreasing the UV-A exposure times from 3 min to 3 s did not greatly affect the maximum total visual confluence reached using different synthetic psoralen concentrations, but did affect the rate at which cell death occurred. The 3 min exposure time resulted in a rapid decrease in cell numbers in comparison to 3 s exposure time. Synthetic psoralen was found to have an increasing photosensitising activity with increasing concentration using a logarithmic shift between 0.5 ppm and 50 ppm. A visual confluency of 45% was achieved using concentrations of 50 ppm psoralen, and 70% visual confluency using 0.5 ppm. Natural mixtures of furanocoumarins containing psoralens, obtained from two separate parsley sources, were found to have greater efficacy at inhibiting the growth cycle of the cells when compared to the synthetic psoralen.