973 resultados para 420
Resumo:
The conventional method for assessing acute oral toxicity (OECD Test Guideline 401) was designed to identify the median lethal dose (LD50), using the death of animals as an endpoint. Introduced as an alternative method (OECD Test Guideline 420), the Fixed Dose Procedure (FDP) relies on the observation of clear signs of toxicity, uses fewer animals and causes less suffering. More recently, the Acute Toxic Class method and the Up-and-Down Procedure have also been adopted as OECD test guidelines. Both of these methods also use fewer animals than the conventional method, although they still use death as an endpoint. Each of the three new methods incorporates a sequential dosing procedure, which results in increased efficiency. In 1999, with a view to replacing OECD Test Guideline 401, the OECD requested that the three new test guidelines be updated. This was to bring them in line with the regulatory needs of all OECD Member Countries, provide further reductions in the number of animals used, and introduce refinements to reduce the pain and distress experienced by the animals. This paper describes a statistical modelling approach for the evaluation of acute oral toxicity tests, by using the revised FDP for illustration. Opportunities for further design improvements are discussed.
Resumo:
The fixed-dose procedure (FDP) was introduced as OECD Test Guideline 420 in 1992, as an alternative to the conventional median lethal dose (LD50) test for the assessment of acute oral toxicity (OECD Test Guideline 401). The FDP uses fewer animals and causes less suffering than the conventional test, while providing information on the acute toxicity to allow substances to be ranked according to the EU hazard classification system. Recently the FDP has been revised, with the aim of providing further reductions and refinements, and classification according to the criteria of the Globally Harmonized Hazard Classification and Labelling scheme (GHS). This paper describes the revised FDP and analyses its properties, as determined by a statistical modelling approach. The analysis shows that the revised FDP classifies substances for acute oral toxicity generally in the same, or a more stringent, hazard class as that based on the LD50 value, according to either the GHS or the EU classification scheme. The likelihood of achieving the same classification is greatest for substances with a steep dose-response curve and median toxic dose (TD50) close to the LD50. The revised FDP usually requires five or six animals with two or fewer dying as a result of treatment in most cases.
Resumo:
Flower and inflorescence reversion involve a switch from floral development back to vegetative development, thus rendering flowering a phase in an ongoing growth pattern rather than a terminal act of the meristem. Although it can be considered an unusual event, reversion raises questions about the nature and function of flowering. It is linked to environmental conditions and is most often a response to conditions opposite to those that induce flowering. Research on molecular genetic mechanisms underlying plant development over the last 15 years has pinpointed some of the key genes involved in the transition to flowering and flower development. Such investigations have also uncovered mutations which reduce floral maintenance or alter the balance between vegetative and floral features of the plant. How this information contributes to an understanding of floral reversion is assessed here. One issue that arises is whether floral commitment (defined as the ability to continue flowering when inductive conditions no longer exist) is a developmental switch affecting the whole plant or is a mechanism which assigns autonomy to individual meristems. A related question is whether floral or vegetative development is the underlying default pathway of the plant. This review begins by considering how studies of flowering in Arabidopsis thaliana have aided understanding of mechanisms of floral maintenance. Arabidopsis has not been found to revert to leaf production in any of the conditions or genetic backgrounds analysed to date. A clear-cut reversion to leaf production has, however, been described in Impatiens balsamina. It is proposed that a single gene controls whether Impatiens reverts or can maintain flowering when inductive conditions are removed, and it is inferred that this gene functions to control the synthesis or transport of a leaf-generated signal. But it is also argued that the susceptibility of Impatiens to reversion is a consequence of the meristem-based mechanisms controlling development of the flower in this species. Thus, in Impatiens, a leaf-derived signal is critical for completion of flowering and can be considered to be the basis of a plant-wide floral commitment that is achieved without accompanying meristem autonomy. The evidence, derived from in vitro and other studies, that similar mechanisms operate in other species is assessed. It is concluded that most species (including Arabidopsis) are less prone to reversion because signals from the leaf are less ephemeral, and the pathways driving flower development have a high level of redundancy that generates meristem autonomy even when leaf-derived signals are weak. This gives stability to the flowering process, even where its initiation is dependent on environmental cues. On this interpretation, Impatiens reversion appears as an anomaly resulting from an unusual combination of leaf signalling and meristem regulation. Nevertheless, it is shown that the ability to revert can serve a function in the life history strategy (perenniality) or reproductive habit (pseudovivipary) of many plants. In these instances reversion has been assimilated into regular plant development and plays a crucial role there.
Resumo:
It has become evident that the mystery of life will not be deciphered just by decoding its blueprint, the genetic code. In the life and biomedical sciences, research efforts are now shifting from pure gene analysis to the analysis of all biomolecules involved in the machinery of life. One area of these postgenomic research fields is proteomics. Although proteomics, which basically encompasses the analysis of proteins, is not a new concept, it is far from being a research field that can rely on routine and large-scale analyses. At the time the term proteomics was coined, a gold-rush mentality was created, promising vast and quick riches (i.e., solutions to the immensely complex questions of life and disease). Predictably, the reality has been quite different. The complexity of proteomes and the wide variations in the abundances and chemical properties of their constituents has rendered the use of systematic analytical approaches only partially successful, and biologically meaningful results have been slow to arrive. However, to learn more about how cells and, hence, life works, it is essential to understand the proteins and their complex interactions in their native environment. This is why proteomics will be an important part of the biomedical sciences for the foreseeable future. Therefore, any advances in providing the tools that make protein analysis a more routine and large-scale business, ideally using automated and rapid analytical procedures, are highly sought after. This review will provide some basics, thoughts and ideas on the exploitation of matrix-assisted laser desorption/ionization in biological mass spectrometry - one of the most commonly used analytical tools in proteomics - for high-throughput analyses.
Resumo:
Compounds possessing antioxidant activity play a crucial role in delaying or preventing lipid oxidation in foods and beverages during processing and storage. Such reactions lead to loss of product quality, especially as a consequence of off-flavor formation. The aim of this study was to determine the antioxidant activity of kilned (standard) and roasted (speciality) malts in relation to phenolic compounds, sugars, amino acids, and color [assessed as European Brewing Convention units (degrees EBC) and absorbance at 420 nm]. The concentrations of sugars and amino acids decreased with the intensity of the applied heat treatment, and this was attributed to the extent of the Maillard reaction, as well as sugar caramelization, in the highly roasted malts. Proline, followed by glutamine, was the most abundant free amino/imino acid in the malt samples, except those that were highly roasted, and maltose was the most abundant sugar in all malts. Levels of total phenolic compounds decreased with heat treatment. Catechin and ferulic acid were the most abundant phenolic compounds in the majority of the malts, and amounts were highest in the kilned samples. In highly roasted malts, degradation products of ferulic acid were identified. Antioxidant activity increased with the intensity of heating, in parallel with color formation, and was significantly higher for roasted malts compared to kilned malts. In kilned malts, phenolic compounds were the main identified contributors to antioxidant activity, with Maillard reaction products also playing a role. In roasted malts, Maillard reaction products were responsible for the majority of the antioxidant activity.
Resumo:
Social factors, including poverty, are known risk factors for depression. In a previous study conducted in Khayelitsha, a very poor peri-urban settlement near Cape Town, a 34.7% prevalence rate for postpartum depression was found, roughly three times the expected rate internationally. This article is a report on a logistical regression analysis, showing that the odds ratios for the probability of maternal depression at two months were: for the infant being unwanted, OR=4.33, 95% CI: (1.75; 11.60); for the father's negative attitude towards the infant, OR=6.03, 95% CI: (2.01; 20.09); and for the mother cohabiting with (as opposed to not living with) a male partner, OR=2.77, 95% CI: (1.08; 7.69). The odds ratios for the probability of the mother being insensitive towards the infant at two months were: for the mother aged 20 to 24 years, OR=0.40, 95% CI: (0.10; 1.42); for the mother aged 25 to 29 years, OR=0.24, 95% CI: (0.06; 0.77); for the mother aged 30 years or older, OR=0.27, 95% CI: (0.07; 0.90); and for the mother receiving no help from her partner, OR=2.12, 95% CI: (1.05; 4.33). Since data were collected cross-sectionally, it is not possible to draw conclusions about causal pathways. The findings support further investigation into the precursors of, and risk factors for, postpartum depression amongst poor South African women.
Resumo:
Background: Postnatal depression is associated with adverse child cognitive and socio-emotional outcome. It is not known whether psychological treatment affects the quality of the mother-child relationship and child outcome. Aims: To evaluate the effect of three psychological treatments on the mother-child relationship and child outcome. Method: Women with post-partum depression (n=193) were assigned randomly to routine primary care, non-directive counselling, cognitive-behavioural therapy or psychodynamic therapy The women and their children, were assessed at 43, [8 and 60 months post-partum. Results: Indications of a positive benefit were limited. All three treatments had a significant benefit on maternal reports of early difficulties in relationships with the infants, counselling gave better infant emotional and behaviour ratings at 18 months and more sensitive early mother-infant interactions. The treatments had no significant impact on maternal management of early infant behaviour problems, security of infant-mother attachment. Infant cognitive development or any child outcome at 5 years. Conclusions: Early intervention was of short-term benefit to the mother-child relationship and infant behaviour problems. More-prolonged intervention may be needed. Health visitors could deliver this.
Resumo:
High spatial resolution vertical profiles of pore-water chemistry have been obtained for a peatland using diffusive equilibrium in thin films (DET) gel probes. Comparison of DET pore-water data with more traditional depth-specific sampling shows good agreement and the DET profiling method is less invasive and less likely to induce mixing of pore-waters. Chloride mass balances as water tables fell in the early summer indicate that evaporative concentration dominates and there is negligible lateral flow in the peat. Lack of lateral flow allows element budgets for the same site at different times to be compared. The high spatial resolution of sampling also enables gradients to be observed that permit calculations of vertical fluxes. Sulfate concentrations fall at two sites with net rates of 1.5 and 5.0nmol cm− 3 day− 1, likely due to a dominance of bacterial sulfate reduction, while a third site showed a net gain in sulfate due to oxidation of sulfur over the study period at an average rate of 3.4nmol cm− 3 day− 1. Behaviour of iron is closely coupled to that of sulfur; there is net removal of iron at the two sites where sulfate reduction dominates and addition of iron where oxidation dominates. The profiles demonstrate that, in addition to strong vertical redox related chemical changes, there is significant spatial heterogeneity. Whilst overall there is evidence for net reduction of sulfate within the peatland pore-waters, this can be reversed, at least temporarily, during periods of drought when sulfide oxidation with resulting acid production predominates.
Resumo:
Objective: Protein kinase C (PKC) plays a pivotal role in modulating the growth and differentiation of many cell types including the cardiac myocyte. However, little is known about molecules that act immediately downstream of PKC in the heart. In this study we have investigated the expression of 80K/MARCKS, a major PKC substrate, in whole ventricles and in cardiac myocytes from developing rat hearts. Methods: Poly A+ RNA was prepared from neonatal (2-day) and adult (42-day) cardiac myocytes and whole ventricular tissue and mRNA expression determined by reverse transcription-polymerase chain reaction (RT-PCR) using primers designed to identify a 420 bp fragment in the 80K/MARCKS gene. Protein extracts were prepared from either 2-day and 42-day cardiac myocytes or from whole ventricular tissue at 2, 5–11, 14, 17, 21, 28 and 42 days of age. Protein expression was determined by immunoblotting with an 80K/MARCKS antipeptide antibody and PKC activity was determined by measuring the amount of γ32P-ATP transferred to a specific peptide substrate. Results: RT-PCR analysis of 80K/MARCKS mRNA in neonatal (2-day) and adult (42-day) cardiac myocytes showed the expression of this gene in both cell types. Immunoblotting revealed maximum 80K/MARCKS protein expression in whole ventricular tissue at 5 days (a 75% increase above values at 2 days), followed by a transient decrease in expression during the 6–8-day period (61% of the protein expressed at 2 days for 8-day tissue) with levels returning to 5 day levels by 11 days of age. 80K/MARCKS protein was present in cardiac myocytes at 2 days of age whereas it was not detectable in adult cells. In addition, PKC activity levels increased to 160% of levels present at 2 days in 8-day-old ventricles with PKC activity levels returning to 5-day levels by 9 days of age. This was then followed by a steady decline in both 80K/MARCKS protein expression and PKC activity through to adulthood. Conclusions: Expression of the PKC substrate, 80K/MARCKS, in cardiac myocytes changes significantly during development and the transient loss of immunoreactive protein during the 6–8-day developmental period may reflect 80K/MARCKS phosphorylation and subsequent down-regulation as a result of the concomitant up-regulation of PKC activity at this time.
Resumo:
Purpose – Construction sector competitiveness has been a subject of interest for many years. Research too often focuses on the means of overcoming the “barriers to change” as if such barriers were static entities. There has been little attempt to understand the dynamic inter-relationship between the differing factors which impinge upon construction sector competitiveness. The purpose of this paper is to outline the benefits of taking a systems approach to construction competitiveness research. Design/methodology/approach – The system dynamics (SD) modelling methodology is described. This can provide practitioners with “microworlds” within which they can explore the dynamic effects of different policy decisions. The data underpinning the use of SD was provided by interviews and case study research which allowed an understanding of the context within which practitioners operate. Findings – The over-riding conclusion is that the SD methodology has been shown to be capable of providing a means to assess the forces which shape the sustained competitiveness of construction firms. As such, it takes the assessment of strategic policy analysis in the construction sector onto a higher plane. The need to collect data and make retrospective assessments of competitiveness and strategic performance at the statistical level is not now the only modus operandi available. Originality/value – The paper describes a novel research methodology which points towards an alternative research agenda for construction competitiveness research.
Resumo:
Diet, among other environmental and genetic factors, is currently recognised to have an important role in health and disease. There is increasing evidence that the human colonic microbiota can contribute positively towards host nutrition and health. As such, dietary modulation has been proposed as important for improved gut health, especially during the highly sensitive stage of infancy. Differences in gut microflora composition and incidence of infection occur between breast- and formula-fed infants. Human milk components that cannot be duplicated in infant formulae could possibly account for these differences. However, various functional food ingredients such as oligosaccharides, prebiotics, proteins and probiotics could effect a beneficial modification in the composition and activities of gut microflora of infants. The aim of the present review is to describe existing knowledge on the composition and metabolic activities of the gastrointestinal microflora of human infants and discuss various possibilities and opportunities for its nutritional modulation.
Resumo:
It is now apparent that there is a strong link between health and nutrition and this can be seen clearly when we talk of obesity. The food industry is trying to capitalise on this by adapting high sugar/fat foods to become healthier alternatives. In confectionery food ingredients can be used for a range of purposes including sucrose replacement. Many of these ingredients may also evade digestion in the upper gut and be fermented by the gut microbiota upon entering the colon. This study was designed to screen a range of ingredients and their activities on the gut microbiota. In this study we screened a range of these ingredients in triplicate batch culture fermentations with known prebiotics as controls. Changes in bacteriology were monitored using FISH. SCFA were measured by GC and gas production was assessed during anaerobic batch fermentations. Bacterial enumeration showed significant increases (P ≤ 0.05) in bifidobacteria and lactobacilli with polydextrose and most polyols with no significant increases in Clostridium histolyticum/perfringens. SCFA and gas formation indicated that the substrates added to the fermenters were being utilised by the gut microbiota. It therefore appears these ingredients exert some prebiotic activity in vitro. Further studies, particularly in human volunteers, are necessary.
Resumo:
Chemisorbed layers of lysine adsorbed on Cu{110} have been studied using X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. XPS indicates that the majority (70%) of the molecules in the saturated layer at room temperature (coverage 0.27 ML) are in their zwitterionic state with no preferential molecular orientation. After annealing to 420 K a less densely packed layer is formed (0.14 ML), which shows a strong angular dependence in the characteristic π-resonance of oxygen K edge NEXAFS and no indication of zwitterions in XPS. These experimental results are best compatible with molecules bound to the substrate through the oxygen atoms of the (deprotonated) carboxylate group and the two amino groups involving Cu atoms in three different close packed rows. This μ4 bonding arrangement with an additional bond through the !-amino group is different from geometries previously suggested for lysine on Cu{110}.