996 resultados para 310-M0019A


Relevância:

10.00% 10.00%

Publicador:

Resumo:

通过对采自云南程海和珠江、闽江、长江、辽河、松花江等水系蛇ju标本的形态、度量特征进行仔细分析和比较,认为蛇ju程海种群是蛇ju的1个新亚种,命名为程海蛇ju(Saurogobio dabryi chenghaiensis)。程海蛇ju的特征为:吻皮发达,盖过上唇;上下唇布满发达的乳突;体及尾柄极细长,体高为体长的12.7%-15.0%,尾柄高为体长的5.5%-6.1%、为尾柄长的31.8%-39.1%;沿体侧中轴自鳃孔上方至尾鳍基具一浅色暗纹,其上布有6-11个大型棒状黑斑(黑斑长为宽的2-4倍);肛门位于腹鳍长度的中点之后;尾鳍最长鳍条为其最短鳍条的2倍以上;仅分布于云南程海。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an investigation of the mode-locking performance of a two-section external-cavity mode-locked InGaAs quantum-dot laser diode, focusing on repetition rate, pulse duration and pulse energy. The lowest repetition rate to-date of any passively mode-locked semiconductor laser diode is demonstrated (310 MHz) and a restriction on the pulse energy (at 0.4 pJ) for the shortest pulse durations is identified. Fundamental mode-locking from 310 MHz to 1.1 GHz was investigated, and harmonic mode-locking was achieved up to a repetition rate of 4.4 GHz. Fourier transform limited subpicosecond pulse generation was realized through implementation of an intra-cavity glass etalon, and pulse durations from 930fs to 8.3ps were demonstrated for a repetition rate of 1 GHz. For all investigations, mode-locking with the shortest pulse durations yielded constant pulse energies of ∼0.4 pJ, revealing an independence of the pulse energy on all the mode-locking parameters investigated (cavity configuration, driving conditions, pulse duration, repetition rate, and output power). © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new theoretical model that predicts the magnetostriction of multilayered composites has been developed. The model takes into account the shear stress between the composite layers and consequently predicts a non-uniform strain along their thickness. The model has been experimentally validated by producing composites formed from three materials with different magnetostrains and mechanical properties, and controlled layer thicknesses in the order of micrometers. Deformations of several ppm, up to 7.5% of the saturation magnetostrain were measured between the edge and the centre of such composites. © 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the resettlement process of a community devastated by annual floods, to newly constructed housing in Pune, India. The relocation from Kamgar Putala slum to a housing society at Hadapsar was organized by a community-led NGO partnership in 2004. The housing development was coordinated by the local NGO Shelter Associates with significant community participation. The housing has been revisited in 2010 to evaluate the sustainability of the resettlement project’s delivery model via stakeholder perception. The process of organizing for resettlement after natural disaster is described along with the implementation and evaluation of the new housing nearly six years after initial occupation. The strong partnership approach overcame a series of political and financial hurdles at various stages of the relocation project. The story of resettling Kamgar Putala is detailed alongside an outline of the current political climate for an alternative slum-upgrading policy in India and Pune. The advantages of an empowered community supported by an influential local NGO demonstrate a commendable team effort which has tackled the threat of floods. The paper highlights the merits of a community-led partnership approach to housing development for achieving sustainable urban development as well as the alleviation of poverty in a developing context.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new method for the optimal design of Functionally Graded Materials (FGM) is proposed in this paper. Instead of using the widely used explicit functional models, a feature tree based procedural model is proposed to represent generic material heterogeneities. A procedural model of this sort allows more than one explicit function to be incorporated to describe versatile material gradations and the material composition at a given location is no longer computed by simple evaluation of an analytic function, but obtained by execution of customizable procedures. This enables generic and diverse types of material variations to be represented, and most importantly, by a reasonably small number of design variables. The descriptive flexibility in the material heterogeneity formulation as well as the low dimensionality of the design vectors help facilitate the optimal design of functionally graded materials. Using the nature-inspired Particle Swarm Optimization (PSO) method, functionally graded materials with generic distributions can be efficiently optimized. We demonstrate, for the first time, that a PSO based optimizer outperforms classical mathematical programming based methods, such as active set and trust region algorithms, in the optimal design of functionally graded materials. The underlying reason for this performance boost is also elucidated with the help of benchmarked examples. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador: