995 resultados para 1995_01270355 TM-56 4302606


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chert and associated host sediments from Monterey Formation and Deep Sea Drilling Project (DSDP) sequences were analyzed in order to assess chemical behavior during diagenesis of biogenic sediments. The primary compositional contrast between chert and host sediment is a greater absolute SiO2 concentration in chert, often with final SiO2 >=98 wt%. This contrast in SiO2 (and Si/Al) potentially reflects precursor sediment heterogeneity, diagenetic chemical fractionation, or both. SiO2 concentrations and Si/Al ratios in chert are far greater than in modern siliceous oozes, however and often exceed values in acid-cleaned diatom tests. Compositional contrasts between chert and host sediment are also orders-of-magnitude greater than between multiple samples of the host sediment. Calculations based on the initial composition of adjacent host, observed porosity reductions from host to chert and a postulated influx of pure SiO2, construct a chert composition which is essentially identical to observed SiO2 values in chert. Thus, precursor heterogeneity does not seem to be the dominant factor influencing the current chert composition for the key elements of interest. In order to assess the extent of chemical fractionation during diagenesis, we approximate the precursor composition by analyzing host sediments adjacent to the chert. The SiO2 concentration contrast seems caused by biogenic SiO2 dissolution and transport from the local adjacent host sediment and subsequent SiO2 reprecipitation in the chert. Along with SiO2, other elements are often added (with respect to Al) to Monterey and DSDP chert during silicification, although absolute concentrations decrease. The two Monterey quartz chert nodules investigated, in contrast to the opal-CT and quartz chert lenses, formed primarily by extreme removal of carbonate and phosphate, thereby increasing relative SiO2 concentrations. DSDP chert formed by both carbonate/phosphate dissolution and SiO2 addition from the host. Manganese is fractionated during chert formation, resulting in MnO/Al2O3 ratios that no longer record the depositional signal of the precursor sediment. REE data indicate only subtle diagenetic fractionation across the rare earth series. Ce/Ce* values do not change significantly during diagenesis of either Monterey or DSDP chert. Eu/Eu* decreases slightly during formation of DSDP chert. Normative La/Yb is affected only minimally as well. During formation of one Monterey opal-CT chert lens, REE/Al ratios show subtle distribution changes at Gd and to a lesser extent near Nd and Ho. REE compositional contrasts between diagenetic states of siliceous sediment and chert are of a vastly smaller scale than has been noted between different depositional environments of marine sediment, indicating that the paleoenvironmental REE signature is not obscured by diagenetic overprinting.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mineral assemblages of DSDP Holes 436 and 438A and the upper section of Hole 439 (871.5-911.0 m sub-bottom) resemble each other and are composed of montmorillonite (probably a small portion of montmorillonite/illite mixed-layer clays), illite, chlorite, kaolinite, quartz, plagioclase, hornblende, calcite, dolomite, siderite, gypsum, pyrite, and halite. In the middle section of Hole 439 (933.5-1041.0 m), clinoptilolite is also found. In the lower section of Hole 439 (1077.5-1150.0 m), montmorillonite is not confirmed, and clinoptilolite and mixed-layer illite are found. These assemblages, which also contain detrital kaolinite, are generally found in sediments from brackish-water environments. At Site 439, more than 1000 meters of sediment might have been removed by erosion at the base.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C1-C5 hydrocarbons from DSDP Legs 56 and 57 sediment gas pockets were analyzed on board ship. Results suggest that the C2-C5 hydrocarbons accompanied biogenic methane and were generated at low temperatures - less than 50° C - either by microorganisms or by low-temperature chemical reactions. Neopentane, a rare constituent of petroleum, is the major C5 component (about 80%) in much of the sediment at Site 438. This compound, which appeared in smaller amounts at Sites 434, 439, 440, and 441, seems to correlate with either fractured or coarse-grained sediments. Scatter in C4 and C5 isomer ratios and generally good correlation between C3, C4 and C5 components suggest local sources for these molecules.