866 resultados para 1901 Art Theory and Criticism
Resumo:
We analyze democratic equity in council voting games (CVGs). In a CVG, a voting body containing all members delegates decision-making to a (time-varying) subset of its members, as describes, e.g., the relationship between the United Nations General Assembly and the United Nations Security Council (UNSC). We develop a theoretical framework for analyzing democratic equitability in CVGs at both the country and region levels, and for different assumptions regarding preference correlation. We apply the framework to evaluate the equitability of the UNSC, and the claims of those who seek to reform it. We find that the individual permanent members are overrepresented by between 21.3 times (United Kingdom) and 3.8 times (China) from a country-level perspective, while from a region perspective Eastern Europe is the most heavily overrepresented region with more than twice its equitable representation, and Africa the most heavily underrepresented. Our equity measures do not preclude some UNSC members from exercising veto rights, however.
Resumo:
This is the first book of critical essays devoted to post-punk legends Mark E Smith and the Fall, examining the group form a number of different perspectives, including their relations with Manchester and the North, post-punk aesthetics cultural politics, fandom and contemporary media. As John Peel famously said, this group was 'always different, yet always the same', and deserving of more academic attention than they have so far received.
Resumo:
In this paper, we consider the transmission of confidential information over a κ-μ fading channel in the presence of an eavesdropper who also experiences κ-μ fading. In particular, we obtain novel analytical solutions for the probability of strictly positive secrecy capacity (SPSC) and a lower bound of secure outage probability (SOPL) for independent and non-identically distributed channel coefficients without parameter constraints. We also provide a closed-form expression for the probability of SPSC when the μ parameter is assumed to take positive integer values. Monte-Carlo simulations are performed to verify the derived results. The versatility of the κ-μ fading model means that the results presented in this paper can be used to determine the probability of SPSC and SOPL for a large number of other fading scenarios, such as Rayleigh, Rice (Nakagamin), Nakagami-m, One-Sided Gaussian, and mixtures of these common fading models. In addition, due to the duality of the analysis of secrecy capacity and co-channel interference (CCI), the results presented here will have immediate applicability in the analysis of outage probability in wireless systems affected by CCI and background noise (BN). To demonstrate the efficacy of the novel formulations proposed here, we use the derived equations to provide a useful insight into the probability of SPSC and SOPL for a range of emerging wireless applications, such as cellular device-to-device, peer-to-peer, vehicle-to-vehicle, and body centric communications using data obtained from real channel measurements.
Resumo:
In many countries wind energy has become an indispensable part of the electricity generation mix. The opportunity for ground based wind turbine systems are becoming more and more constrained due to limitations on turbine hub heights, blade lengths and location restrictions linked to environmental and permitting issues including special areas of conservation and social acceptance due to the visual and noise impacts. In the last decade there have been numerous proposals to harness high altitude winds, such as tethered kites, airfoils and dirigible based rotors. These technologies are designed to operate above the neutral atmospheric boundary layer of 1,300 m, which are subject to more powerful and persistent winds thus generating much higher electricity capacities. This paper presents an in-depth review of the state-of-the-art of high altitude wind power, evaluates the technical and economic viability of deploying high altitude wind power as a resource in Northern Ireland and identifies the optimal locations through considering wind data and geographical constraints. The key findings show that the total viable area over Northern Ireland for high altitude wind harnessing devices is 5109.6 km2, with an average wind power density of 1,998 W/m2 over a 20-year span, at a fixed altitude of 3,000 m. An initial budget for a 2MW pumping kite device indicated a total cost £1,751,402 thus proving to be economically viable with other conventional wind-harnessing devices.
Resumo:
Using data obtained by the high-resolution CRisp Imaging SpectroPolarimeter instrument on the Swedish 1 m Solar Telescope, we investigate the dynamics and stability of quiet-Sun chromospheric jets observed at the disk center. Small-scale features, such as rapid redshifted and blueshifted excursions, appearing as high-peed jets in the wings of the Hα line, are characterized by short lifetimes and rapid fading without any descending behavior. To study the theoretical aspects of their stability without considering their formation mechanism, we model chromospheric jets as twisted magnetic flux tubes moving along their axis, and use the ideal linear incompressible magnetohydrodynamic approximation to derive the governing dispersion equation. Analytical solutions of the dispersion equation indicate that this type of jet is unstable to Kelvin–Helmholtz instability (KHI), with a very short (few seconds) instability growth time at high upflow speeds. The generated vortices and unresolved turbulent flows associated with the KHI could be observed as a broadening of chromospheric spectral lines. Analysis of the Hα line profiles shows that the detected structures have enhanced line widths with respect to the background. We also investigate the stability of a larger-scale Hα jet that was ejected along the line of sight. Vortex-like features, rapidly developing around the jet’s boundary, are considered as evidence of the KHI. The analysis of the energy equation in the partially ionized plasma shows that ion–neutral collisions may lead to fast heating of the KH vortices over timescales comparable to the lifetime of chromospheric jets.
Resumo:
Despite noteworthy exceptions, nursing’s literature largely disregards the ways in which social and sociological theory permeates, guides and shapes research, education, and practice. Likewise, social theory’s ability to position nursing within wider structures of healthcare and educational provision is similarly and puzzlingly downplayed. The questions nurses ask and the problems they face cannot however, adequately be addressed without engaging with social and sociological theory and, to progress this engagement, contributors to this book explore how social theories are used by and might apply to nursing and nursing practice. This work brings together leading international nursing and non-nursing scholars to stimulate thought and debate around a fascinating and enduring topic.
Resumo:
Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of “nominal” solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.
Resumo:
Over the last decade, a new idea challenging the classical self-non-self viewpoint has become popular amongst immunologists. It is called the Danger Theory. In this conceptual paper, we look at this theory from the perspective of Artificial Immune System practitioners. An overview of the Danger Theory is presented with particular emphasis on analogies in the Artificial Immune Systems world. A number of potential application areas are then used to provide a framing for a critical assessment of the concept, and its relevance for Artificial Immune Systems.
Resumo:
Drawing on historical research, personal interviews, performance analysis, and my own embodied experience as a participant-observer in several clown workshops, I explore the diverse historical influences on clown theatre as it is conceived today. I then investigate how the concept of embodied knowledge is reflected in red-nose clown pedagogy. Finally, I argue that through shared embodied knowledge spectators are able to perceive and appreciate the humor of clown theatre in performance. I propose that clown theatre represents a reaction to the eroding personal connections prompted by the so-called information age, and that humor in clown theatre is a revealing index of socio-cultural values, attitudes, dispositions, and concerns.
Resumo:
The thesis presents experimental results, simulations, and theory on turbulence excited in magnetized plasmas near the ionosphere’s upper hybrid layer. The results include: The first experimental observations of super small striations (SSS) excited by the High-Frequency Auroral Research Project (HAARP) The first detection of high-frequency (HF) waves from the HAARP transmitter over a distance of 16x10^3 km The first simulations indicating that upper hybrid (UH) turbulence excites electron Bernstein waves associated with all nearby gyroharmonics Simulation results that indicate that the resulting bulk electron heating near the upper hybrid (UH) resonance is caused primarily by electron Bernstein waves parametrically excited near the first gyroharmonic. On the experimental side we present two sets of experiments performed at the HAARP heating facility in Alaska. In the first set of experiments, we present the first detection of super-small (cm scale) striations (SSS) at the HAARP facility. We detected density structures smaller than 30 cm for the first time through a combination of satellite and ground based measurements. In the second set of experiments, we present the results of a novel diagnostic implemented by the Ukrainian Antarctic Station (UAS) in Verdansky. The technique allowed the detection of the HAARP signal at a distance of nearly 16 Mm, and established that the HAARP signal was injected into the ionospheric waveguide by direct scattering off of dekameter-scale density structures induced by the heater. On the theoretical side, we present results of Vlasov simulations near the upper hybrid layer. These results are consistent with the bulk heating required by previous work on the theory of the formation of descending artificial ionospheric layers (DIALs), and with the new observations of DIALs at HAARP’s upgraded effective radiated power (ERP). The simulations that frequency sweeps, and demonstrate that the heating changes from a bulk heating between gyroharmonics, to a tail acceleration as the pump frequency is swept through the fourth gyroharmonic. These simulations are in good agreement with experiments. We also incorporate test particle simulations that isolate the effects of specific wave modes on heating, and we find important contributions from both electron Bernstein waves and upper hybrid waves, the former of which have not yet been detected by experiments, and have not been previously explored as a driver of heating. In presenting these results, we analyzed data from HAARP diagnostics and assisted in planning the second round of experiments. We integrated the data into a picture of experiments that demonstrated the detection of SSS, hysteresis effects in simulated electromagnetic emission (SEE) features, and the direct scattering of the HF pump into the ionospheric waveguide. We performed simulations and analyzed simulation data to build the understanding of collisionless heating near the upper hybrid layer, and we used these simulations to show that bulk electron heating at the upper hybrid layer is possible, which is required by current theories of DAIL formation. We wrote a test particle simulation to isolate the effects of electron Bernstein waves and upper hybrid layers on collisionless heating, and integrated this code to work with both the output of Vlasov simulations and the input for simulations of DAIL formation.
Resumo:
This thesis attempts to provide deeper historical and theoretical grounding for sense-making, thereby illustrating its applicability to practical information seeking research. In Chapter One I trace the philosophical origins of Brenda Dervin’s theory known as “sense making,” reaching beyond current scholarship that locates the origins of sense-making in twentieth-century Phenomenology and Communication theory and find its rich ontological, epistemological, and etymological heritage that dates back to the Pre-Socratics. After exploring sense-making’s Greek roots, I examine sense-making’s philosophical undercurrents found in Hegel’s Phenomenology of Spirit (1807), where he also returns to the simplicity of the Greeks for his concept of sense. With Chapter Two I explore sense-making methodology and find, in light of the Greek and Hegelian dialectic, a dialogical bridge connecting sense-making’s theory with pragmatic uses. This bridge between Dervin’s situation and use occupies a distinct position in sense-making theory. Moreover, building upon Brenda Dervin’s model of sense-making, I use her metaphors of gap and bridge analogy to discuss the dialectic and dialogic components of sense making. The purpose of Chapter Three is pragmatic – to gain insight into the online information-seeking needs, experiences, and motivation of first-degree relatives (FDRs) of breast cancer survivors through the lens of sense-making. This research analyses four questions: 1) information-seeking behavior among FDRs of cancer survivors compared to survivors and to undiagnosed, non-related online cancer information seekers in the general population, 2) types of and places where information is sought, 3) barriers or gaps and satisfaction rates FDRs face in their cancer information quest, and 4) types and degrees of cancer information and resources FDRs want and use in their information search for themselves and other family members. An online survey instrument designed to investigate these questions was developed and pilot tested. Via an email communication, the Susan Love Breast Cancer Research Foundation distributed 322,000 invitations to its membership to complete the survey, and from March 24th to April 5th 10,692 women agreed to take the survey with 8,804 volunteers actually completing survey responses. Of the 8,804 surveys, 95% of FDRs have searched for cancer information online, and 84% of FDRs use the Internet as a sense-making tool for additional information they have received from doctors or nurses. FDRs report needing much more information than either survivors or family/friends in ten out of fifteen categories related to breast and ovarian cancer. When searching for cancer information online, FDRs also rank highest in several of sense-making’s emotional levels: uncertainty, confusion, frustration, doubt, and disappointment than do either survivors or friends and family. The sense-making process has existed in theory and praxis since the early Greeks. In applying sense–making’s theory to a contemporary problem, the survey reveals unaddressed situations and gaps of FDRs’ information search process. FDRs are a highly motivated group of online information seekers whose needs are largely unaddressed as a result of gaps in available online information targeted to address their specific needs. Since FDRs represent a quarter of the population, further research addressing their specific online information needs and experiences is necessary.
Resumo:
In this paper we use concepts from graph theory and cellular biology represented as ontologies, to carry out semantic mining tasks on signaling pathway networks. Specifically, the paper describes the semantic enrichment of signaling pathway networks. A cell signaling network describes the basic cellular activities and their interactions. The main contribution of this paper is in the signaling pathway research area, it proposes a new technique to analyze and understand how changes in these networks may affect the transmission and flow of information, which produce diseases such as cancer and diabetes. Our approach is based on three concepts from graph theory (modularity, clustering and centrality) frequently used on social networks analysis. Our approach consists into two phases: the first uses the graph theory concepts to determine the cellular groups in the network, which we will call them communities; the second uses ontologies for the semantic enrichment of the cellular communities. The measures used from the graph theory allow us to determine the set of cells that are close (for example, in a disease), and the main cells in each community. We analyze our approach in two cases: TGF-β and the Alzheimer Disease.