914 resultados para 120402 Engineering Design Knowledge
Resumo:
This study discusses the significance of having service as a business logic, and more specifically, how value co-creation can be seen as an enhancing phenomenon to business-to-business relationships in traditional business sector. The purpose of this study is to investigate how value cocreation can enhance a business-to-business relationship in the heating, ventilation and airconditioning (HVAC) industry of building services engineering, through three sub-objectives: to identify what is value in the industry, how value is co-created in the industry, and what is value in a business-to-business relationship in the industry. The theoretical part this study consists of academic knowledge and literature related to the concepts of value, value co-creation and business-to-business relationships. In order to research value co-creation and business-to-business relationships in HVAC industry of building services engineering both, metaphorical and conceptual thinking of service dominant (S-D) logic and more managerial approach of service logic (SL), contributed to the theoretical part of the study. The empirical research conducted for this study is based on seven semi-structured interviews, which constituted the holistic, qualitative single case study method chosen for the research. The data was collected in September 2014 from CEOs, managers and owners representing six building services engineering firms. The interviews were analysed with the help of transcriptions, role-ordered matrices and thematic networks. The findings of this study indicate that value in HVAC industry consists of client expertise and supplier expertise. The result of applying client expertise and supplier expertise to the business-to- business relationship is characterized as value-in-reputation, when continuity, interaction, learning and rapport of the business relationship are ensured. As a result, value co-creation in the industry consists of mutual and separate elements, which the client and the supplier apply in the process, in addition to proactive interaction. The findings of this study, together with the final framework, enhance the understanding of the connection existing between value co-creation and business-to-business relationship. The findings suggest that value in the HVAC industry is characterized by both value-in-use and value-inreputation. Value-in-reputation enhances the formation of value-in-use, and consequently, value cocreation enhances the business-to-business relationship. This study thus contributes to the existing knowledge on the concepts of value and value co-creation in business-to-business relationships.
Resumo:
The goal of this thesis is to estimate the effect of the form of knowledge representation on the efficiency of knowledge sharing. The objectives include the design of an experimental framework which would allow to establish this effect, data collection, and statistical analysis of the collected data. The study follows the experimental quantitative design. The experimental questionnaire features three sample forms of knowledge: text, mind maps, concept maps. In the interview, these forms are presented to an interviewee, afterwards the knowledge sharing time and knowledge sharing quality are measured. According to the statistical analysis of 76 interviews, text performs worse in both knowledge sharing time and quality compared to visualized forms of knowledge representation. However, mind maps and concept maps do not differ in knowledge sharing time and quality, since this difference is not statistically significant. Since visualized structured forms of knowledge perform better than unstructured text in knowledge sharing, it is advised for companies to foster the usage of these forms in knowledge sharing processes inside the company. Aside of performance in knowledge sharing, the visualized structured forms are preferable due the possibility of their usage in the system of ontological knowledge management within an enterprise.
Resumo:
Advances in technology have provided new ways of using entertainment and game technology to foster human interaction. Games and playing with games have always been an important part of people’s everyday lives. Traditionally, human-computer interaction (HCI) research was seen as a psychological cognitive science focused on human factors, with engineering sciences as the computer science part of it. Although cognitive science has made significant progress over the past decade, the influence of people’s emotions on design networks is increasingly important, especially when the primary goal is to challenge and entertain users (Norman 2002). Game developers have explored the key issues in game design and identified that the driving force in the success of games is user experience. User-centered design integrates knowledge of users’ activity practices, needs, and preferences into the design process. Geocaching is a location-based treasure hunt game created by a community of players. Players use GPS (Global Position System) technology to find “treasures” and create their own geocaches; the game can be developed when the players invent caches and used more imagination to creations the caches. This doctoral dissertation explores user experience of geocaching and its applications in tourism and education. Globally, based on the Geocaching.com webpage, geocaching has been played about 180 countries and there are more than 10 million registered geocachers worldwide (Geocaching.com, 25.11.2014). This dissertation develops and presents an interaction model called the GameFlow Experience model that can be used to support the design of treasure hunt applications in tourism and education contexts. The GameFlow Model presents and clarifies various experiences; it provides such experiences in a real-life context, offers desirable design targets to be utilized in service design, and offers a perspective to consider when evaluating the success of adventure game concepts. User-centered game designs have adapted to human factor research in mainstream computing science. For many years, the user-centered design approach has been the most important research field in software development. Research has been focusing on user-centered design in software development such as office programs, but the same ideas and theories that will reflect the needs of a user-centered research are now also being applied to game design (Charles et al. 2005.) For several years, we have seen a growing interest in user experience design. Digital games are experience providers, and game developers need tools to better understand the user experience related to products and services they have created. This thesis aims to present what the user experience is in geocaching and treasure hunt games and how it can be used to develop new concepts for the treasure hunt. Engineers, designers, and researchers should have a clear understanding of what user experience is, what its parts are, and most importantly, how we can influence user satisfaction. In addition, we need to understand how users interact with electronic products and people, and how different elements synergize their experiences. This doctoral dissertation represents pioneering work on the user experience of geocaching and treasure hunt games in the context of tourism and education. The research also provides a model for game developers who are planning treasure hunt concepts.
Resumo:
Wind is one of the most compelling forms of indirect solar energy. Available now, the conversion of wind power into electricity is and will continue to be an important element of energy self-sufficiency planning. This paper is one in a series intended to report on the development of a new type of generator for wind energy; a compact, high-power, direct-drive permanent magnet synchronous generator (DD-PMSG) that uses direct liquid cooling (LC) of the stator windings to manage Joule heating losses. The main param-eters of the subject LC DD-PMSG are 8 MW, 3.3 kV, and 11 Hz. The stator winding is cooled directly by deionized water, which flows through the continuous hollow conductor of each stator tooth-coil winding. The design of the machine is to a large degree subordinate to the use of these solid-copper tooth-coils. Both steady-state and timedependent temperature distributions for LC DD-PMSG were examined with calculations based on a lumpedparameter thermal model, which makes it possible to account for uneven heat loss distribution in the stator conductors and the conductor cooling system. Transient calculations reveal the copper winding temperature distribution for an example duty cycle during variable-speed wind turbine operation. The cooling performance of the liquid cooled tooth-coil design was predicted via finite element analysis. An instrumented cooling loop featuring a pair of LC tooth-coils embedded in a lamination stack was built and laboratory tested to verify the analytical model. Predicted and measured results were in agreement, confirming the predicted satisfactory operation of the LC DD-PMSG cooling technology approach as a whole.
Resumo:
Gravitational phase separation is a common unit operation found in most large-scale chemical processes. The need for phase separation can arise e.g. from product purification or protection of downstream equipment. In gravitational phase separation, the phases separate without the application of an external force. This is achieved in vessels where the flow velocity is lowered substantially compared to pipe flow. If the velocity is low enough, the denser phase settles towards the bottom of the vessel while the lighter phase rises. To find optimal configurations for gravitational phase separator vessels, several different geometrical and internal design features were evaluated based on simulations using OpenFOAM computational fluid dynamics (CFD) software. The studied features included inlet distributors, vessel dimensions, demister configurations and gas phase outlet configurations. Simulations were conducted as single phase steady state calculations. For comparison, additional simulations were performed as dynamic single and two-phase calculations. The steady state single phase calculations provided indications on preferred configurations for most above mentioned features. The results of the dynamic simulations supported the utilization of the computationally faster steady state model as a practical engineering tool. However, the two-phase model provides more truthful results especially with flows where a single phase does not determine the flow characteristics.
Resumo:
The need for reduced intrinsic weight of structures and vehicles in the transportation industry has made aluminium research of interest. Aluminium has properties that are favourable for structural engineering, including good strength-to-weight ratio, corrosion resistance and machinability. It can be easily recycled saving energy used in smelting as compared to steel. Its alloys can have ultimate tensile strength of up to 750 MPa, which is comparable to steel. Aluminium alloys are generally weldable, however welding of high strength alloys like the 7xxx series pose considerable challenges. This paper presents research on the weldability of high strength aluminium alloys, principally the 7xxx series. The weldability with various weld processes including MIG, TIG, and FSW, is discussed in addition to consideration of joint types, weld defects and recommendations for minimizing or preventing weld defects. Experimental research was carried out on 7025-T6 and AW-7020 alloys. Samples were welded, and weld cross sections utilized in weld metallurgy studies. Mechanical tests were carried out including hardness tests and tensile tests. In addition, testing was done for the presence of Al2O3 on exposed aluminium alloy. It was observed that at constant weld heat input using a pulsed MIG system, the welding speed had little or no effect on the weld hardness. However, the grain size increased as the filler wire feed rate, welding current and welding speed increased. High heat input resulted in lower hardness of the weld profile. Weld preheating was detrimental to AW- 7020 welds; however, artificial aging was beneficial. Acceptable welds were attained with pulsed MIG without the removal of the Al2O3 layer prior to welding. The Al2O3 oxide layer was found to have different compositions in different aluminium alloys. These findings contribute useful additional information to the knowledge base of aluminium welding. The application of the findings of this study in welding will help reduce weld cost and improve high strength aluminium structure productivity by removing the need for pre-weld cleaning. Better understanding of aluminium weld metallurgy equips weld engineers with information for better aluminium weld design.
Resumo:
The goal of this thesis is to define and validate a software engineering approach for the development of a distributed system for the modeling of composite materials, based on the analysis of various existing software development methods. We reviewed the main features of: (1) software engineering methodologies; (2) distributed system characteristics and their effect on software development; (3) composite materials modeling activities and the requirements for the software development. Using the design science as a research methodology, the distributed system for creating models of composite materials is created and evaluated. Empirical experiments which we conducted showed good convergence of modeled and real processes. During the study, we paid attention to the matter of complexity and importance of distributed system and a deep understanding of modern software engineering methods and tools.
Resumo:
Global energy consumption has been increasing yearly and a big portion of it is used in rotating electrical machineries. It is clear that in these machines energy should be used efficiently. In this dissertation the aim is to improve the design process of high-speed electrical machines especially from the mechanical engineering perspective in order to achieve more reliable and efficient machines. The design process of high-speed machines is challenging due to high demands and several interactions between different engineering disciplines such as mechanical, electrical and energy engineering. A multidisciplinary design flow chart for a specific type of high-speed machine in which computer simulation is utilized is proposed. In addition to utilizing simulation parallel with the design process, two simulation studies are presented. The first is used to find the limits of two ball bearing models. The second is used to study the improvement of machine load capacity in a compressor application to exceed the limits of current machinery. The proposed flow chart and simulation studies show clearly that improvements in the high-speed machinery design process can be achieved. Engineers designing in high-speed machines can utilize the flow chart and simulation results as a guideline during the design phase to achieve more reliable and efficient machines that use energy efficiently in required different operation conditions.
Resumo:
The vast majority of our contemporary society owns a mobile phone, which has resulted in a dramatic rise in the amount of networked computers in recent years. Security issues in the computers have followed the same trend and nearly everyone is now affected by such issues. How could the situation be improved? For software engineers, an obvious answer is to build computer software with security in mind. A problem with building software with security is how to define secure software or how to measure security. This thesis divides the problem into three research questions. First, how can we measure the security of software? Second, what types of tools are available for measuring security? And finally, what do these tools reveal about the security of software? Measuring tools of these kind are commonly called metrics. This thesis is focused on the perspective of software engineers in the software design phase. Focus on the design phase means that code level semantics or programming language specifics are not discussed in this work. Organizational policy, management issues or software development process are also out of the scope. The first two research problems were studied using a literature review while the third was studied using a case study research. The target of the case study was a Java based email server called Apache James, which had details from its changelog and security issues available and the source code was accessible. The research revealed that there is a consensus in the terminology on software security. Security verification activities are commonly divided into evaluation and assurance. The focus of this work was in assurance, which means to verify one’s own work. There are 34 metrics available for security measurements, of which five are evaluation metrics and 29 are assurance metrics. We found, however, that the general quality of these metrics was not good. Only three metrics in the design category passed the inspection criteria and could be used in the case study. The metrics claim to give quantitative information on the security of the software, but in practice they were limited to evaluating different versions of the same software. Apart from being relative, the metrics were unable to detect security issues or point out problems in the design. Furthermore, interpreting the metrics’ results was difficult. In conclusion, the general state of the software security metrics leaves a lot to be desired. The metrics studied had both theoretical and practical issues, and are not suitable for daily engineering workflows. The metrics studied provided a basis for further research, since they pointed out areas where the security metrics were necessary to improve whether verification of security from the design was desired.
Resumo:
This paper aims to be a very preliminary effort to contribute to a better understanding of the interaction among innovation, competition and intellectual property policies from an evolutionary-developmental perspective. As such, it seeks to build a more coherent framework within which the discussions of both institution building and policy design for development can proceed. In order to accomplish that, the paper introduces the concept of "Knowledge Governance" as an alternative analytical and policy-oriented approach, and suggests that from a public policy/public interest perspective, and within an evolutionary framework, it is a better way to address the problems concerning the production, appropriability and diffusion of knowledge. In doing so, it also intends contribute to broaden the ongoing discussions on the "New Developmentalism".
Resumo:
Ohjelmiston suorituskyky on kokonaisvaltainen asia, johon kaikki ohjelmiston elinkaaren vaiheet vaikuttavat. Suorituskykyongelmat johtavat usein projektien viivästymisiin, kustannusten ylittymisiin sekä joissain tapauksissa projektin täydelliseen epäonnistumiseen. Software performance engineering (SPE) on ohjelmistolähtöinen lähestysmistapa, joka tarjoaa tekniikoita suorituskykyisen ohjelmiston kehittämiseen. Tämä diplomityö tutkii näitä tekniikoita ja valitsee niiden joukosta ne, jotka soveltuvat suorituskykyongelmien ratkaisemiseen kahden IT-laitehallintatuotteen kehityksessä. Työn lopputuloksena on päivitetty versio nykyisestä tuotekehitysprosessista, mikä huomioi sovellusten suorituskykyyn liittyvät haasteet tuotteiden elinkaaren eri vaiheissa.
Resumo:
The purpose of conducting this thesis is to gather around information about additive manufacturing and to design a product to be additively manufactured. The specific manufacturing method dealt with in this thesis, is powder bed fusion of metals. Therefore when mentioning additive manufacturing in this thesis, it is referred to powder bed fusion of metals. The literature review focuses on the principle of powder bed fusion, the general process chain in additive manufacturing, design rules for additive manufacturing. Examples of success stories in additive manufacturing and reasons for selecting parts to be manufactured with additive manufacturing are also explained in literature review. This knowledge is demanded to understand the experimental part of the thesis. The experimental part of the thesis is divided into two parts. Part A concentrates on finding proper geometry for building self-supporting pipes and proper parameters for support structures of them. Part B of the experimental part concentrates on a case study of designing a product for additive manufacturing. As a result of experimental part A, the design process of self-supporting pipes, results of visual analysis and results of 3D scanning are presented. As a result of experimental part B the design process of the product is presented and compared to the original model.
Resumo:
In this thesis was performed comprehensive study about the convenience of scallops in plate structures. A literature review was performed and lack of knowledge was fulfilled with fatigue tests performed in the laboratory of Steel Structures at the Lappeenranta University of Technology and with finite element method. The aim of this thesis was to produce design guidance for the use of scallops for different structural details and different loading conditions. An additional aim was to include more precise instructions for scallop design to produce good fatigue resistance and appropriate manufacturing quality. The literature review was performed searching bridge engineering and maritime standards and design guides and studies from scientific databases and reference lists from the literature of this field. Fatigue tests were used to research the effect of using scallops or not using scallops to fatigue strength of bracket specimen. Tests were performed on three specimens with different scallop radii and to five specimens without scallops with different weld penetration depths. Finite element method using solid elements, symmetry and submodels was used to determine stress concentration factors for I-beams with scallops. Stresses were defined with hot spot stress method. Choosing to use a scallop or not in the structure is affected by many factors, such as structural and loading conditions and manufacturability. As a rule of thumb, scallops should be avoided because those cause stress concentration points to the structure and take a lot of time to manufacture. When scallops are not used, good quality welding should be provided and full weld penetration is recommended to be used in load carrying corner weld areas. In some cases, it is advisable to use scallops. In that case, circular scallops are recommended to be used and radius should be chosen from fatigue strength or manufacturing point of view.
Resumo:
The User Experience (UX) designers are undoubtedly aware of how many UX design methods currently exist and that sometimes it becomes a problem to choose an appropriate one. What are all of methods that designers have in their “arsenal”? When can they use them? This thesis presents the research on the design methods in the contemporary context of User Experience (UX) and Innovations by using a survey approach. The study is limited to cover the domain of consumer mobile services development and provider companies around the world. The study follows 2 clear objectives: (1) to understand what design methods are currently used in that context and to what extent they are used (2) to identify at what stage according to the UX design thinking process for creating innovations they are placed. The study contributes to the research in the field of UX design and Innovations and extends the knowledge in that field together with communities’ (UXPA, SIGCHI, SIGSOFT) members’ cooperation. The research is vital due to lack of information on design practices and their application in the chosen context.
Resumo:
There continues to be a shortage of health professionals interested in providing care for the older adult. Part of the problem seems to stem from the negative perceptions of geriatrics as a clinical speciality. This study examines the knowledge, attitudes and career decisions of physical therapy students in Ontario before and after an educational intervention. Surveys were conducted with 144 physical therapy students from five universities before and after their geriatrics course in order to measure their knowledge, attitudes and interest in working with older adults. The incoming class of physical therapy students (n = 1 86) acted as control subjects for the study. The Revised Palmore Facts On Aging Quiz measured the students' knowledge of aging (Miller & Dodder, 1980). The Revised Tuckman-Lorge (Axelrod & Eisdorfer, 1961) and the Kogan Old People Scales (Kogan, 1961) were used to examine attitude. An environmental scale was developed based on the work of Snape (1986) to measure the impact of the working conditions on the students' career choices. A 10-point Likert-type scale based on the work of Michlelutte & Diseker (1985) was modified and used to measure career interest in working with the elderly. On independent sample t-tests, positive attitudes were related to the demographic characteristic of gender; ethnicity was negatively related; and marital status was found to be unrelated to attitude (fi<.05). Having a relationship with an older adult and taking courses in gerontology were also found to be positively related to attitude (fi<.05). Results on a betweensubjects design which compared students before and after the course found that knowledge scores improved from pretest to posttest (fi<.05). In general, attitude scores improved from T1 to T2 on both measurement tools (b<.05). The environmental and vocational interest scales yielded statistically significant differences between the control and experimental groups during the intervention period (p<.05). The results of this research indicated that knowledge and attitudes improve after an educational intervention; however, there was little impact on the students' overall career decisions. Further research is indicated to examine the complex relationship between attitude and behaviour and its impact on students' career choices. In addition, the impact of geriatric clinical environment on students' attitudes and career decisions needs to be further explored.