967 resultados para 030606 Structural Chemistry and Spectroscopy
Resumo:
The electrical and structural characteristics of secondary defects in regrown amorphous layers formed in n-type Si(100) with a resistivity of 2 OMEGA cm and 6 OMEGA cm using Ge+ ions, has been studied. The amorphous layers with a thickness of 460 nm are formed by implantation of 1 x 10(15) Ge+ cm-2 at an energy of 400 keV. Both conventional furnace and rapid thermal annealing were used to regrow the amorphous layer and the residual defects have been characterised in terms of their concentration depth distribution and activation energies using C-V and DLTS. Structural information has been obtained from RBS and XTEM. By choosing suitable anneal conditions it is possible to eliminate extended defects, apart from a low concentration of end of range dislocation loops. However, a substantial population of electrically active point defects remain after simple low thermal budget anneals. In a sample implanted with 1 x 10(15) Ge+ cm-2 at 400 keV a region of deep donors approximately 460 nm from the surface is always present When the samples are annealed at higher temperatures (> 850-degrees the total deep donor concentration is reduced by one order of magnitude. Other electrically active defects not observable in the low (750-degrees-C) temperature annealed layers become apparent during anneals at intermediate temperatures.
Resumo:
In this work we investigate the structural properties of symmetrically strained (GaIn)As/GaAs/Ga(PAs)/GaAs superlattices by means of x-ray diffraction, reciprocal-space mapping, and x-ray reflectivity. The multilayers were grown by metalorganic vapor-phase epitaxy on (001) GaAs substrates intentionally off-oriented towards one of the nearest [110] directions. High-resolution triple-crystal reciprocal-space maps recorded for different azimuth angles in the vicinity of the (004) Bragg diffraction clearly show a double periodicity of the x-ray peak intensity that can be ascribed to a lateral and a vertical periodicity occurring parallel and perpendicular to the growth surface. Moreover, from the intensity modulation of the satellite peaks, a lateral-strain gradient within the epilayer unit cell is found, varying from a tensile to a compressive strain. Thus, the substrate off-orientation promotes a lateral modulation of the layer thickness (ordered interface roughness) and of the lattice strain, giving rise to laterally ordered macrosteps. In this respect, contour maps of the specular reflected beam in the vicinity of the (000) reciprocal lattice point were recorded in order to inspect the vertical and lateral interface roughness correlation, A semiquantitative analysis of our results shows that the interface morphology and roughness is greatly influenced by the off-orientation angle and the lateral strain distribution. Two mean spatial wavelengths can be determined, one corresponding exactly to the macrostep periodicity and the other indicating a further interface waviness along the macrosteps. The same spatial periodicities were found on the surface by atomic-force-microscopy images confirming the x-ray results and revealing a strong vertical correlation of the interfaces up to the outer surface.
Rice-soil-structural management and effective wheat emergence and yield in irrigated rice-wheat crop
Resumo:
First principles calculations were performed to study the structural, electronic and mechanical properties of hypothetical rhenium dinitride ReN2 for various space groups. It was found that cubic Fm-3m and Pa-3, tetragonal P4(2)/mnm, and orthorhombic Pmmn structures are mechanically stable and metallic. P4(2)/mnm structure is thermodynamically stable at ambient conditions and up to 76 GPa. It has the shortest Re-N bond (1.964 angstrom).
Resumo:
We investigate the structural stability and electronic properties of ordered perovskite-type compounds Ba2MIrO6 (M = La, Y) by use of density functional theory. Cubic (Fm-3m), rhombohedral (R-3) and monoclinic (P2(1)/n) phases are considered for each compound. It was found that the most energetically stable phase for Ba2YIrO6 and Ba2LaIrO6 is P2(1)/n andR-3, respectively. It is also interesting to find that Ba2YIrO6 in R-3 phase, which was not reported in experiment, has a slightly lower energy than experimentally observed cubic Fm-3m phase.
Resumo:
The electrospray ionization ion trap multiple-stage tandem mass spectrometry (ESI-MSn) and electrospray ionization Fourier transform ion cyclotron resonance multiple-stage tandem mass spectrometry (ESI-FT-ICR-MSn) have been applied successfully to the direct investigation of a number of dibenzocyclooctadiene lignan constituents from the methanol extracts of the Fructus Schisandrae in the positive ion mode. The detailed structural characterization of the same skeleton and different peripheral substituents had been studied and the precise elemental compositions of ions at high mass resolution had been obtained. So the fragmentation mechanisms could be clarified.
Resumo:
Vanadium(III) complexes bearing salicylaldiminato ligands (2a-k) [RN=CH(Ar0)]VCl2(THF)2 (Ar C61714, R = Ph, 2a; p-CF3Ph, 2b; p-CH3Ph, 2c; 2,6-Me2Ph, 2d; 2,6-iPr2Ph, 2e; cyclohexyl, 2f; Ar = C6H3tBu(2), R = Ph, 2g; 2,6-iPr2Ph, 2h; Ar = C6H2tBU2(2,4), R = Ph, 2i; 2,6-iPr2Ph, 2j; Ar = C6H2Br2, R = Ph, 2k) were prepared from VC13(THF)3 by treating with 1.0 equiv of (RN=CH)ArOH in tetrahydrofuran (THF) in the presence of excess triethylamine (TEA).
Resumo:
The structural, electronic and magnetic properties of CaCu3Co4O12 were studied by use of the full-potential linearized augmented plane wave method. The calculated results indicate that CaCu3Co4O12 is stable both thermodynamically and mechanically. Both GGA (generalized gradient approximation) and GGA + U methods predict that CaCu3Co4O12 is metallic. The ferromagnetic configuration is only slightly more stable in energy compared with the non-magnetic configuration (3.7 meV), suggesting that they are competitive for being the ground state. Co is in the low spin state (S = 1/2).
Resumo:
The structural, mechanical and electronic properties Of OsC2 were investigated by use of the density functional theory. Seven structures were considered, i.e., orthorhombic Cmca (No. 12, OsSi2), Pmmn (No. 59, 002) and Pnnm (No. 58, OsN2); tetragonal P4(2)/mnm (No. 136, OsO2) and 14/mmm (No. 139, CaC2); cubic Fm-3m (No. 225, CaF2) and Pa-3 (No. 205, PtN2). The results indicate that Cmca in OsSi2 type structure is energetically the most stable phase among the considered structures. It is also stable mechanically. OsC2 in Pmmn phase has the largest bulk modulus 319 GPa and shear modulus 194 GPa. The elastic anisotropy is discussed. (C) 2009 Elsevier B.V. All rights reserved.