825 resultados para wireless LAN
Resumo:
The promise of Wireless Sensor Networks (WSNs) is the autonomous collaboration of a collection of sensors to accomplish some specific goals which a single sensor cannot offer. Basically, sensor networking serves a range of applications by providing the raw data as fundamentals for further analyses and actions. The imprecision of the collected data could tremendously mislead the decision-making process of sensor-based applications, resulting in an ineffectiveness or failure of the application objectives. Due to inherent WSN characteristics normally spoiling the raw sensor readings, many research efforts attempt to improve the accuracy of the corrupted or "dirty" sensor data. The dirty data need to be cleaned or corrected. However, the developed data cleaning solutions restrict themselves to the scope of static WSNs where deployed sensors would rarely move during the operation. Nowadays, many emerging applications relying on WSNs need the sensor mobility to enhance the application efficiency and usage flexibility. The location of deployed sensors needs to be dynamic. Also, each sensor would independently function and contribute its resources. Sensors equipped with vehicles for monitoring the traffic condition could be depicted as one of the prospective examples. The sensor mobility causes a transient in network topology and correlation among sensor streams. Based on static relationships among sensors, the existing methods for cleaning sensor data in static WSNs are invalid in such mobile scenarios. Therefore, a solution of data cleaning that considers the sensor movements is actively needed. This dissertation aims to improve the quality of sensor data by considering the consequences of various trajectory relationships of autonomous mobile sensors in the system. First of all, we address the dynamic network topology due to sensor mobility. The concept of virtual sensor is presented and used for spatio-temporal selection of neighboring sensors to help in cleaning sensor data streams. This method is one of the first methods to clean data in mobile sensor environments. We also study the mobility pattern of moving sensors relative to boundaries of sub-areas of interest. We developed a belief-based analysis to determine the reliable sets of neighboring sensors to improve the cleaning performance, especially when node density is relatively low. Finally, we design a novel sketch-based technique to clean data from internal sensors where spatio-temporal relationships among sensors cannot lead to the data correlations among sensor streams.
Resumo:
https://digitalcommons.fiu.edu/yearbooks/1002/thumbnail.jpg
Resumo:
https://digitalcommons.fiu.edu/yearbooks/1003/thumbnail.jpg
Resumo:
https://digitalcommons.fiu.edu/yearbooks/1004/thumbnail.jpg
Resumo:
https://digitalcommons.fiu.edu/yearbooks/1005/thumbnail.jpg
Resumo:
Wireless sensor networks are emerging as effective tools in the gathering and dissemination of data. They can be applied in many fields including health, environmental monitoring, home automation and the military. Like all other computing systems it is necessary to include security features, so that security sensitive data traversing the network is protected. However, traditional security techniques cannot be applied to wireless sensor networks. This is due to the constraints of battery power, memory, and the computational capacities of the miniature wireless sensor nodes. Therefore, to address this need, it becomes necessary to develop new lightweight security protocols. This dissertation focuses on designing a suite of lightweight trust-based security mechanisms and a cooperation enforcement protocol for wireless sensor networks. This dissertation presents a trust-based cluster head election mechanism used to elect new cluster heads. This solution prevents a major security breach against the routing protocol, namely, the election of malicious or compromised cluster heads. This dissertation also describes a location-aware, trust-based, compromise node detection, and isolation mechanism. Both of these mechanisms rely on the ability of a node to monitor its neighbors. Using neighbor monitoring techniques, the nodes are able to determine their neighbors’ reputation and trust level through probabilistic modeling. The mechanisms were designed to mitigate internal attacks within wireless sensor networks. The feasibility of the approach is demonstrated through extensive simulations. The dissertation also addresses non-cooperation problems in multi-user wireless sensor networks. A scalable lightweight enforcement algorithm using evolutionary game theory is also designed. The effectiveness of this cooperation enforcement algorithm is validated through mathematical analysis and simulation. This research has advanced the knowledge of wireless sensor network security and cooperation by developing new techniques based on mathematical models. By doing this, we have enabled others to build on our work towards the creation of highly trusted wireless sensor networks. This would facilitate its full utilization in many fields ranging from civilian to military applications.
Resumo:
With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.
Resumo:
With the increase in traffic on the internet, there is a greater demand for wireless mobile and ubiquitous applications. These applications need antennas that are not only broadband, but can also work in different frequency spectrums. Even though there is a greater demand for such applications, it is still imperative to conserve power. Thus, there is a need to design multi-broadband antennas that do not use a lot of power. Reconfigurable antennas can work in different frequency spectrums as well as conserve power. The current designs of reconfigurable antennas work only in one band. There is a need to design reconfigurable antennas that work in different frequency spectrums. In this current era of high power consumption there is also a greater demand for wireless powering. This dissertation explores ideal designs of reconfigurable antennas that can improve performance and enable wireless powering. This dissertation also presents lab results of the multi-broadband reconfigurable antenna that was created. A detailed mathematical analyses, as well as extensive simulation results are also presented. The novel reconfigurable antenna designs can be extended to Multiple Input Multiple Output (MIMO) environments and military applications.
Resumo:
With the developments in computing and communication technologies, wireless sensor networks have become popular in wide range of application areas such as health, military, environment and habitant monitoring. Moreover, wireless acoustic sensor networks have been widely used for target tracking applications due to their passive nature, reliability and low cost. Traditionally, acoustic sensor arrays built in linear, circular or other regular shapes are used for tracking acoustic sources. The maintaining of relative geometry of the acoustic sensors in the array is vital for accurate target tracking, which greatly reduces the flexibility of the sensor network. To overcome this limitation, we propose using only a single acoustic sensor at each sensor node. This design greatly improves the flexibility of the sensor network and makes it possible to deploy the sensor network in remote or hostile regions through air-drop or other stealth approaches. Acoustic arrays are capable of performing the target localization or generating the bearing estimations on their own. However, with only a single acoustic sensor, the sensor nodes will not be able to generate such measurements. Thus, self-organization of sensor nodes into virtual arrays to perform the target localization is essential. We developed an energy-efficient and distributed self-organization algorithm for target tracking using wireless acoustic sensor networks. The major error sources of the localization process were studied, and an energy-aware node selection criterion was developed to minimize the target localization errors. Using this node selection criterion, the self-organization algorithm selects a near-optimal localization sensor group to minimize the target tracking errors. In addition, a message passing protocol was developed to implement the self-organization algorithm in a distributed manner. In order to achieve extended sensor network lifetime, energy conservation was incorporated into the self-organization algorithm by incorporating a sleep-wakeup management mechanism with a novel cross layer adaptive wakeup probability adjustment scheme. The simulation results confirm that the developed self-organization algorithm provides satisfactory target tracking performance. Moreover, the energy saving analysis confirms the effectiveness of the cross layer power management scheme in achieving extended sensor network lifetime without degrading the target tracking performance.
Resumo:
The purpose of this thesis was to develop an efficient routing protocol which would provide mobility support to the mobile devices roaming within a network. The routing protocol need to be compatible with the existing internet architecture. The routing protocol proposed here is based on the Mobile IP routing protocol and could solve some of the problems existing in current Mobile IP implementation e.g. ingress filtering problem. By implementing an efficient timeout mechanism and introducing Paging mechanism to the wireless network, the protocol minimizes the number of control messages sent over the network. The implementation of the system is primarily done on three components: 1) Mobile devices that need to gain access to the network, 2) Router which would be providing roaming support to the mobile devices and 3) Database server providing basic authentication services on the system. As a result, an efficient IP routing protocol is developed which would provide seamless mobility to the mobile devices on the network.
Resumo:
Combinatorial designs are used for designing key predistribution schemes that are applied to wireless sensor networks in communications. This helps in building a secure channel. Private-key cryptography helps to determine a common key between a pair of nodes in sensor networks. Wireless sensor networks using key predistribution schemes have many useful applications in military and civil operations. When designs are efficiently implemented on sensor networks, blocks with unique keys will be the result. One such implementation is a transversal design which follows the principle of simple key establishment. Analysis of designs and modeling the key schemes are the subjects of this project.
Resumo:
Cooperative communication has gained much interest due to its ability to exploit the broadcasting nature of the wireless medium to mitigate multipath fading. There has been considerable amount of research on how cooperative transmission can improve the performance of the network by focusing on the physical layer issues. During the past few years, the researchers have started to take into consideration cooperative transmission in routing and there has been a growing interest in designing and evaluating cooperative routing protocols. Most of the existing cooperative routing algorithms are designed to reduce the energy consumption; however, packet collision minimization using cooperative routing has not been addressed yet. This dissertation presents an optimization framework to minimize collision probability using cooperative routing in wireless sensor networks. More specifically, we develop a mathematical model and formulate the problem as a large-scale Mixed Integer Non-Linear Programming problem. We also propose a solution based on the branch and bound algorithm augmented with reducing the search space (branch and bound space reduction). The proposed strategy builds up the optimal routes from each source to the sink node by providing the best set of hops in each route, the best set of relays, and the optimal power allocation for the cooperative transmission links. To reduce the computational complexity, we propose two near optimal cooperative routing algorithms. In the first near optimal algorithm, we solve the problem by decoupling the optimal power allocation scheme from optimal route selection. Therefore, the problem is formulated by an Integer Non-Linear Programming, which is solved using a branch and bound space reduced method. In the second near optimal algorithm, the cooperative routing problem is solved by decoupling the transmission power and the relay node se- lection from the route selection. After solving the routing problems, the power allocation is applied in the selected route. Simulation results show the algorithms can significantly reduce the collision probability compared with existing cooperative routing schemes.
Resumo:
L'elaborato tratta della progettazione di un sistema di alimentazione wireless risonante per i nodi sensori, strumenti fondamentali per il controllo delle strutture(Structural Health Monitoring). Esso si concentra sulla realizzazione di un convertitore flyback risonante (con circuito di snubber incluso per il main switch) in grado di fornire una tensione di 5 Volt in uscita a fronte di una corrente media massima sul carico di 800mA data una tensione di 12 volt in ingresso. Dopo aver introdotto il concetto di Wireless Power Transfer (WPT) e i principi fisici su cui esso poggia (induzione elettromagnetica e risonanza elettromagnetica), si presentano i modelli circuitali più utilizzati in questo ambito. Una volta illustrate le conoscenze allo stato dell'arte dell'accoppiamento induttivo risonante, si analizza il comportamento del modello scelto, al fine di evidenziare i vantaggi dell'utilizzo del circuito alla frequenza di risonanza. Sono state effettuate simulazioni con il simulatore LTspice come controprova. Si passa quindi a dimensionare i vari elementi del circuito a fronte delle specifiche stabilite. Grazie ai risultati ottenuti, si procede alla stesura del Bill Of Materials. La tesi si conclude presentando i possibili campi di ricerca e sviluppo del sistema di alimentazione.
Resumo:
Questo elaborato presenta il progetto di una interfaccia per l'aggiunta di sensori inerziali ad un nodo di una WSN (Wireless Sensor Network) �finalizzato al monitoraggio delle frane. Analizzando i vantaggi che avrebbe portato l'utilizzo di ulteriori sensori, si �e cercato di fornire un valido approccio di progettazione; in particolare l'idea �e quella di integrarli con un giroscopio ed un accelerometro aventi applicazioni in altri settori. Con questo particolare utilizzo, essi possono portare ad un miglior monitoraggio riuscendo a rilevare i movimenti in modo dettagliato ed a riconoscere i falsi allarmi. Nell'approccio che si intende suggerire verranno sfruttate schede per la prototipazione rapida, user-friendly e con costi decisamente accessibili, adatte alla sperimentazione elettronica e per lo sviluppo di nuovi dispositivi. Attraverso l'utilizzo di ambienti di sviluppo appositamente creati, si sono simulate le comunicazioni tra nodo e scheda di sensori, mettendo in evidenza i vantaggi ottenuti. Buona parte del progetto ha riguardato la programmazione in linguaggio C/C++, con una particolare attenzione al risparmio energetico.
Resumo:
Introduction. Current times are distinguished, among other things, by the instability of the events, facts and ideas that follow one another vertiginously. The circumstances that surround our society are extremely changing, as well as the way of understanding things and assessing recent developments. The material world dominates over human life. Productive tasks take first place. Appearances are unstable and the ephemeral confirms its power in the 21st century’s mentality. We are immersed in the aesthetics of seduction and image. And in human life, the expansion of needs in all walks of life has become part of the structure of human beings’ existence in the current world. The consumerist fever, the euphoria for new things have made the sense of life virtually insubstantial. All this hardly fits into the nature of healthcare professions. In our case, nursing science has scarce support in our society for continuing the research about the meaning of being a nurse that the reality of the profession requires...