967 resultados para winter warming


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chironomids preserved in a sediment core from Lago di Origlio (416 m a.s.l.), a lake in the foreland of the Southern Swiss Alps, allowed quantitative reconstruction of Late Glacial and Early Holocene summer temperatures using a combined Swiss–Norwegian temperature inference model based on chironomid assemblages from 274 lakes. We reconstruct July air temperatures of ca. 10 °C between 17 300 and 16 000 cal yr BP, a rather abrupt warming to ca. 12.0 °C at ca. 16 500–16 000 cal yr BP, and a strong temperature increase at the transition to the Bølling/Allerød interstadial with average temperatures of about 14 °C. During the Younger Dryas and earliest Holocene similar temperatures are reconstructed as for the interstadial. The rather abrupt warming at 16 500–16 000 cal yr BP is consistent with sea-surface temperature as well as speleothem records, which indicate a warming after the end of Heinrich event 1 (sensu stricto) and before the Bølling/Allerød interstadial in southern Europe and the Mediterranean Sea. Pollen records from Origlio and other sites in southern Switzerland and northern Italy indicate an early reforestation of the lowlands 2000–1500 yr prior to the large-scale afforestation of Central Europe at the onset of the Bølling/Allerød period at ca. 14 700–14 600 cal yr BP. Our results suggest that these early afforestation processes in the formerly glaciated areas of northern Italy and southern Switzerland have been promoted by increasing temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[1] Winter circulation types under preindustrial and glacial conditions are investigated and used to quantify their impact on precipitation. The analysis is based on daily mean sea level pressure fields of a highly resolved atmospheric general circulation model and focuses on the North Atlantic and European region. We find that glacial circulation types are dominated by patterns with an east-west pressure gradient, which clearly differs from the predominantly zonal patterns for the recent past. This is also evident in the frequency of occurrence of circulation types when projecting preindustrial circulation types onto the glacial simulations. The elevation of the Laurentide ice sheet is identified as a major cause for these differences. In areas of strong precipitation signals in glacial times, the changes in the frequencies of occurrence of the circulation types explain up to 60% of the total difference between preindustrial and glacial simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proxy records and results of a three dimensional climate model show that European summer temperatures roughly a millennium ago were comparable to those of the last 25 years of the 20th century, supporting the existence of a summer "Medieval Warm Period" in Europe. Those two relatively mild periods were separated by a rather cold era, often referred to as the "Little Ice Age". Our modelling results suggest that the warm summer conditions during the early second millennium compared to the climate background state of the 13th–18th century are due to a large extent to the long term cooling induced by changes in land-use in Europe. During the last 200 years, the effect of increasing greenhouse gas concentrations, which was partly levelled off by that of sulphate aerosols, has dominated the climate history over Europe in summer. This induces a clear warming during the last 200 years, allowing summer temperature during the last 25 years to reach back the values simulated for the early second millennium. Volcanic and solar forcing plays a weaker role in this comparison between the last 25 years of the 20th century and the early second millennium. Our hypothesis appears consistent with proxy records but modelling results have to be weighted against the existing uncertainties in the external forcing factors, in particular related to land-use changes, and against the uncertainty of the regional climate sensitivity. Evidence for winter is more equivocal than for summer. The forced response in the model displays a clear temperature maximum at the end of the 20th century. However, the uncertainties are too large to state that this period is the warmest of the past millennium in Europe during winter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Climate- or holiday-related seasonality in hospital admission rates is well known for many diseases. However, little research has addressed the impact of tourism on seasonality in admission rates. We therefore investigated the influence of tourism on emergency admission rates in Switzerland, where winter and summer leisure sport activities in large mountain regions can generate orthopedic injuries. METHODS: Using small area analysis, orthopedic hospital service areas (HSAo) were evaluated for seasonality in emergency admission rates. Winter sport areas were defined using guest bed accommodation rate patterns of guest houses and hotels located above 1000 meters altitude that show clear winter and summer peak seasons. Emergency admissions (years 2000-2002, n = 135'460) of local and nonlocal HSAo residents were evaluated. HSAo were grouped according to their area type (regular or winter sport area) and monthly analyses of admission rates were performed. RESULTS: Of HSAo within the defined winter sport areas 70.8% show a seasonal, summer-winter peak hospital admission rate pattern and only 1 HSAo outside the defined winter sport areas shows such a pattern. Seasonal hospital admission rates in HSAo in winter sport areas can be up to 4 times higher in winter than the intermediate seasons, and they are almost entirely due to admissions of nonlocal residents. These nonlocal residents are in general -and especially in winter- younger than local residents, and nonlocal residents have a shorter length of stay in winter sport than in regular areas. The overall geographic distribution of nonlocal residents admitted for emergencies shows highest rates during the winter as well as the summer in the winter sport areas. CONCLUSION: Small area analysis using orthopedic hospital service areas is a reliable method for the evaluation of seasonality in hospital admission rates. In Switzerland, HSAo defined as winter sport areas show a clear seasonal fluctuation in admission rates of only nonlocal residents, whereas HSAo defined as regular, non-winter sport areas do not show such seasonality. We conclude that leisure sport, and especially ski/snowboard tourism demands great flexibility in hospital beds, staff and resource planning in these areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Mild therapeutic hypothermia has been shown to improve outcome for patients after cardiac arrest and may be beneficial for ischaemic stroke and myocardial ischaemia patients. However, in the awake patient, even a small decrease of core temperature provokes vigorous autonomic reactions-vasoconstriction and shivering-which both inhibit efficient core cooling. Meperidine and skin warming each linearly lower vasoconstriction and shivering thresholds. We tested whether a combination of skin warming and a medium dose of meperidine additively would reduce the shivering threshold to below 34 degrees C without producing significant sedation or respiratory depression. METHODS: Eight healthy volunteers participated on four study days: (1) control, (2) skin warming (with forced air and warming mattress), (3) meperidine (target plasma level: 0.9 mug/ml), and (4) skin warming plus meperidine (target plasma level: 0.9 mug/ml). Volunteers were cooled with 4 degrees C cold Ringer lactate infused over a central venous catheter (rate asymptotically equal to 2.4 degrees C/hour core temperature drop). Shivering threshold was identified by an increase of oxygen consumption (+20% of baseline). Sedation was assessed with the Observer's Assessment of Alertness/Sedation scale. RESULTS: Control shivering threshold was 35.5 degrees C +/- 0.2 degrees C. Skin warming reduced the shivering threshold to 34.9 degrees C +/- 0.5 degrees C (p = 0.01). Meperidine reduced the shivering threshold to 34.2 degrees C +/- 0.3 degrees C (p < 0.01). The combination of meperidine and skin warming reduced the shivering threshold to 33.8 degrees C +/- 0.2 degrees C (p < 0.01). There were no synergistic or antagonistic effects of meperidine and skin warming (p = 0.59). Only very mild sedation occurred on meperidine days. CONCLUSION: A combination of meperidine and skin surface warming reduced the shivering threshold to 33.8 degrees C +/- 0.2 degrees C via an additive interaction and produced only very mild sedation and no respiratory toxicity.