1000 resultados para weathering rate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper calculates the electron impact excitation rate coefficients from the ground term 2s(2)2p(2) P-3 to the excited terms of the 2s(2)2p(2), 2s2p(3), 2s(2)2p3s, 2s(2)2p3p, and 2s(2)2p3d configurations of N II. In the calculations, rnulticonfiguration Dirac-Fork wave functions have been applied to describe the target-ion states and relativistic distorted-wave calculation has been performed to generate fine-structure collision strengths. The collision strengths are then averaged over a Maxwellian distribution of electron velocities in order to generate the effective collision strengths. The calculated rate coefficients are compared with available experimental and theoretical data, and some good agreements are found for the outer shell electron excitations. But for the inner shell electron excitations there are still some differences between the present calculations and available experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analyzed the propagation rate of the chemical waves observed during the course of CO oxidation on a Ag/Pt(I 10) composite surface that were reported in our previous papers [Surf Interface Anal. 2001, 32, 179; J. Phys. Chem. B 2002, 106, 5645]. In all cases, the propagation rate v can be adequately fitted as v = v(0) + D-0/d, in which v(0) and D-0 are constants, and d is the distance between the reaction front of the chemical wave and the boundary from which the chemical wave originates. We propose that the surface species responsible for the formation of the chemical wave comes from two paths: the adsorption of molecules in the gas phase on the surface and the migration from the adjacent surface with different catalytic activity. v(0) corresponds to the contribution from the surface species due to the adsorption, and D-0/d to that of the surface species that migrates from the adjacent surface. The rate equation clearly suggests that the observed chemical wave results from the coupling between adjacent surfaces with different catalytic activities during the course of heterogeneous catalysis. These results, together with our previous reports, provide a good fundamental understanding of spillover, an important phenomenon in heterogeneous catalysis.