985 resultados para waste heat
Resumo:
AbstractThe aim of this study was to analyze the impact that heat treatment with salts and freezing processes on the sensory, instrumental, and physico-chemical characteristics of fried potatoes of the Monalisa cultivar. The potatoes were blanched in distilled water (P); sodium chloride solution (B1); calcium chloride solution (B2), and a solution with both of these salts (B3). They were then pre-cooked and frozen for 24 hours and for 30 days. After frying, sensory characteristics were analyzed (color, texture, flavor, oiliness), along with overall preference and instrumental determinations of texture, color, and oil content. Further tests were conducted on the sample with the best results in the sensory analysis (B1), along with sample P as a control, to determine granule microstructure, carbohydrate fractions, glycemic index, and glycemic load. Blanching B3, despite reducing oil absorption and providing less oiliness, obtained lesser overall preference. Freezing for 30 days increased the lightness, except for when sodium chloride was used, which intensified the color yellow. The use of sodium chloride did not interfere with the type of starch granules, nor with the formation of resistant starch; however, longer freezing time reduced the glycemic index and concentrated the dietary fiber content. All samples exhibited low glycemic index and moderate glycemic loads.
Resumo:
Abstract Biodegradable films blends made of safflower oil nutraceutical capsules waste corn starch (20:4, 30:4, 40:4 and 50:4) were prepared. The objective of this study was to evaluate the influence of addition of different concentrations of safflower oil nutraceutical capsule waste in the mechanical properties (tensile strength, elongation at break, Young’s modulus) and thickness of corn starch films. A decrease in tensile strength and Young’s modulus and an increase in elongation at break were observed with the increase in the content of the nutraceutical capsule waste. The results showed that the blends of safflower oil capsules waste-corn starch films demonstrated promising characteristics to form biodegradable films with different mechanical characteristics.
Resumo:
This thesis introduces heat demand forecasting models which are generated by using data mining algorithms. The forecast spans one full day and this forecast can be used in regulating heat consumption of buildings. For training the data mining models, two years of heat consumption data from a case building and weather measurement data from Finnish Meteorological Institute are used. The thesis utilizes Microsoft SQL Server Analysis Services data mining tools in generating the data mining models and CRISP-DM process framework to implement the research. Results show that the built models can predict heat demand at best with mean average percentage errors of 3.8% for 24-h profile and 5.9% for full day. A deployment model for integrating the generated data mining models into an existing building energy management system is also discussed.
Resumo:
The aim of this thesis is to define effects of lignin separation process on Pulp mill chemical balance especially on sodium/sulphur-balance. The objective is to develop a simulation model with WinGEMS Process Simulator and use that model to simulate the chemical balances and process changes. The literature part explains what lignin is and how kraft pulp is produced. It also introduces to the methods that can be used to extract lignin from black liquor stream and how those methods affect the pulping process. In experimental part seven different cases are simulated with the created simulation model. The simulations are based on selected reference mill that produces 500 000 tons of bleached air-dried (90 %) pulp per year. The simulations include the chemical balance calculation and the estimated production increase. Based on the simulations the heat load of the recovery boiler can be reduced and the pulp production increased when lignin is extracted. The simulations showed that decreasing the waste acid stream intake from the chlorine dioxide plant is an effective method to control the sulphidity level when about 10 % of lignin is extracted. With higher lignin removal rates the in-mill sulphuric acid production has been discovered to be a better alternative to the sulphidity control.
Resumo:
A new approach to the determination of the thermal parameters of high-power batteries is introduced here. Application of local heat flux measurement with a gradient heat flux sensor (GHFS) allows determination of the cell thermal parameters in di_erent surface points of the cell. The suggested methodology is not cell destructive as it does not require deep discharge of the cell or application of any charge/discharge cycles during measurements of the thermal parameters of the cell. The complete procedure is demonstrated on a high-power Li-ion pouch cell, and it is verified on a sample with well-known thermal parameters. A comparison of the experimental results with conventional thermal characterization methods shows an acceptably low error. The dependence of the cell thermal parameters on state of charge (SoC) and measurement points on the surface was studied by the proposed measurement approach.
Resumo:
Axial-flux machines tend to have cooling difficulties since it is difficult to arrange continuous heat path between the stator stack and the frame. One important reason for this is that no shrink fitting of the stator is possible in an axial-flux machine. Using of liquid-cooled end shields does not alone solve this issue. Cooling of the rotor and the end windings may also be difficult at least in case of two-stator-single-rotor construction where air circulation in the rotor and in the end-winding areas may be difficult to arrange. If the rotor has significant losses air circulation via the rotor and behind the stator yokes should be arranged which, again, weakens the stator cooling. In this paper we study a novel way of using copper bars as extra heat transfer paths between the stator teeth and liquid cooling pools in the end shields. After this the end windings still suffer of low thermal conductivity and means for improving this by high-heat-conductance material was also studied. The design principle of each cooling system is presented in details. Thermal models based on Computational Fluid Dynamics (CFD) are used to analyse the temperature distribution in the machine. Measurement results are provided from different versions of the machine. The results show that significant improvements in the cooling can be gained by these steps.
Resumo:
A large amount of fly ash is produced in power plants and a big fraction of it ends up as waste to landfills. Disposal of fly ash to landfills is expensive for power plants due to for example waste taxation. However fly ash can utilized in different applications. Possibility of utilizing fly ash can be increased by granulation which also removes the dustiness problems of ash. This Thesis deals with the prerequisites for commercialization of a new granulation technique, tube granulation. Tube granulation technique utilizes water, calcium oxide in fly ash plus carbon dioxide and heat from flue gas. This Thesis determines the necessary auxiliary equipment for tube granulation, approaches for process dimensioning and implementation of the granulation process into a continuous power plant process. In addition, the economic benefits of tube granulation are examined from the user’s perspective. A continuous tube granulation process requires the following auxiliary systems to function: ash system, water feed system and flue gas system. Implementation of tube granulation system into a power plant process depends on the specific power plant but a general principle is that fly ash should be obtained to the granulator as fresh as possible and flue gas should be taken from the pressure side of a flue gas fan. Dimensioning of the process can be examined for example in terms of degree of filling and residence time in the granulator or in terms of granule drying. Determining the optimal dimensioning parameters requires pilot tests with the granulator.
Resumo:
Three-dimensional (3D) forming of paperboard and heat sealing of lidding films to trays manufactured by the press forming process are investigated in this thesis. The aim of the work was to investigate and recognize the factors affecting the quality of heat sealing and the leak resistance (tightness) of press-formed, polymer-coated paperboard trays heatsealed with a multi-layer polymer based lidding film. One target was to achieve a solution that can be used in food packaging using modified atmosphere packaging (MAP). The main challenge in acquiring adequate tightness properties for the use of MAP is creases in the sealing area of the paperboard trays which can act as capillary tubes and prevent leak-proof sealing. Several experiments were made to investigate the effect of different factors and process parameters in the forming and sealing processes. Also different methods of analysis, such as microscopic analysis and 3D-profilometry were used to investigate the structure of the creases in the sealing area, and to analyse the surface characteristics of the tray flange of the formed trays to define quality that can be sealed with satisfactory tightness for the use of MAP. The main factors and parameters that had an effect on the result of leak-proof sealing and must be adjusted accordingly were the tray geometry and dimensions, blank holding force in press forming, surface roughness of the sealing area, the geometry and depth of the creases, and the sealing pressure. The results show that the quality of press-formed, polymer-coated paperboard trays and multi-layer polymer lidding films can be satisfactory for the use of modified atmosphere packaging in food solutions. Suitable tools, materials, and process parameters have to be selected and used during the tray manufacturing process and lid sealing process, however. Utilizing these solutions and results makes it possible for a package that is made mostly from renewable and recyclable sources to be a considerable alternative for packages made completely from oil based polymers, and to achieve a greater market share for fibre-based solutions in food packaging using MAP.
Resumo:
The purpose of this master’s thesis is to gain an understanding of passive safety systems’ role in modern nuclear reactors projects and to research the failure modes of passive decay heat removal safety systems which use phenomenon of natural circulation. Another purpose is to identify the main physical principles and phenomena which are used to establish passive safety tools in nuclear power plants. The work describes passive decay heat removal systems used in AES-2006 project and focuses on the behavior of SPOT PG system. The descriptions of the main large-scale research facilities of the passive safety systems of the AES-2006 power plant are also included. The work contains the calculations of the SPOT PG system, which was modeled with thermal-hydraulic system code TRACE. The dimensions of the calculation model are set according to the dimensions of the real SPOT PG system. In these calculations three parameters are investigated as a function of decay heat power: the pressure of the system, the natural circulation mass flow rate around the closed loop, and the level of liquid in the downcomer. The purpose of the calculations is to test the ability of the SPOT PG system to remove the decay heat from the primary side of the nuclear reactor in case of failure of one, two, or three loops out of four. The calculations show that three loops of the SPOT PG system have adequate capacity to provide the necessary level of safety. In conclusion, the work supports the view that passive systems could be widely spread in modern nuclear projects.
Resumo:
This thesis compares the responses of regenerating forelimb tissues of the newt Notophthalmu..f vlridescens to the stresses of hyperthermia and ID.echanical injury of amputation. In particular, both quantitative and qualitative changes in the synthesis of soluble proteins in stump tissues, including those of the heat shock protein family (HSP70-1ike) were examined. Results from SDS-PAGEfluorography indicate that the trauma of amputation mimics the heat shock response both quantitatively and temporally in its transient repression of the synthesis of most normal cellular proteins, and qualitatively. in the locaJized expression of two unique proteins (hsp30 and hsp70). Fluorography of proteins separated by twodimensional gets revealed that thelCl4:alizedt amputation induced 70kDa protein (amp70) was distinct from the more basic newt hsp/hsc70 isoforms. Although limb amputation resulted in an increase in the synthesis of HSP70 mRNA analogous to that induced by heat 3.b.OCKf amp70 did not cross-react with murine monoclonal antibodies directed against both the inducible and cognate HSP70 proteins of the human. Thus, the possible relationship of amp70 to other members of the HSP70-1ike protein family remains unclear. Western analyses indicated that the levels of the constitutive form of HSP70 (hsc70) were found to be regulated in a stage-dependent manner in the distal stump tissues of the regen,erating forelimb of the newt. The highest levels were found in the mid-late bud stage, a period during which rapidly dividing blastema cells begin to redifferentiate in a proximodistal direction. Immediately after amputation) hsc70 synthesis and accumulation was depressed below steady-state levels measured in the unamputated limb~ The results are discussed in light of a possible role for HSPs and amputatio~ induced proteins in the epimorphic regeneration of the amphibian limb.
Resumo:
The specific heat of single-crystal U Pd2 Si2 has been studied using both the step heating and continious heating methods for the temperature range 2 to 250 K. Successive phase transitions at Tl = 136I< and T2 = 108I< are reported, which are consistent with current publications. The transition at 40K, which was previously reported, has not been detected. Recent published elastic neutron scattering data, magnetic susceptibility and resistivity results suggest that U Pd2 Si2 may be a heavy fermion compound, however, the electronic specific heat coefficient I (= 18.97 ;~), obtained from the specific heat Cv measurements, is smaller than that of the conventional heavy fermion system. The Debye temperature of U Pd2Si2 is found to be 116.55K. The possibility is discussed that the maximum in CIT in the low-temperature range 2 to 4K corresponds to Schottky anomaly induced by localized magnetic impurities .
Resumo:
Methods of measuring specific heats of small samples were studied. Three automated methods were explored, two of which have shown promising results. The adiabatic continuous heating method, has provided smooth well behaved data but further work is presently underway to improve on the results obtained so far . The decay method has been success fully implemented demonstrating reasonable agreement with accepted data for a copper test sample.
Resumo:
Photosynthetic state transitions were investigated in the cyanobacterium Synechococcus sp. PCC 6301 by studying fluorescence emission, heat loss, and PS I activity in intact cells brought to state 1 and state 2. 77K fluorescence emission spectra were modelled with a sum of 6 components corresponding to PBS, PS II, and PS I emissions. The modelled data showed a large decrease in PS II fluorescence accompanied with a small increase in the PS I fluorescence upon transition to state 2 for excitation wavelengths absorbed by both PBS and ChI ll.. The fluorescence changes seen with ChI .a. excitations do not support the predictions of the mobile PBS model of state transition in PBS-containing organisms. Measurements of heat loss from intact cells in the two states were similar for both ChI it. and PBS excitations over three orders of magnitude of laser flash intensity. This suggests that the PBS does not become decoupled from PS II in state 2 as proposed by the PBS detachment model of state transition in PBS-containing organisms. PS I activity measurements done on intact cells showed no difference in the two states, in contrast with the predictions of all of the existing models of state transitions. Based on these results a model for state transition In PBScontaining organisms is proposed, with a PS II photoprotectory function.