895 resultados para viral entry
Resumo:
The central nervous system (CNS) has long been regarded as an immune privileged organ implying that the immune system avoids the CNS not to disturb its homeostasis, which is critical for proper function of neurons. Meanwhile, it is accepted that immune cells do in fact gain access to the CNS and that immune responses are mounted within this tissue. However, the unique CNS microenvironment strictly controls these immune reactions starting with tightly regulating immune cell entry into the tissue. The endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid (CSF) barrier control immune cell entry into the CNS, which is rare under physiological conditions. During a variety of pathological conditions of the CNS such as viral or bacterial infections, or during inflammatory diseases such as multiple sclerosis (MS), immunocompetent cells readily traverse the BBB and subsequently enter the CNS parenchyma. Most of our current knowledge on the molecular mechanisms involved in immune cell entry into the CNS has been derived from studies performed in experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Thus, a large part of our current knowledge on immune cell entry across the BBBs is based on the results obtained in this animal model. Similarly, knowledge on the benefits and potential risks associated with therapeutic targeting of immune cell recruitment across the BBB in human diseases are mostly derived from such treatment regimen in MS. Other mechanisms of immune cell entry into the CNS might therefore apply under different pathological conditions such as bacterial meningitis or stroke and need to be considered.
Resumo:
Directed release of human immunodeficiency virus type 1 (HIV-1) into the cleft of the virological synapse that can form between infected and uninfected T cells, for example, in lymph nodes, is thought to contribute to the systemic spread of this virus. In contrast, influenza virus, which causes local infections, is shed into the airways of the respiratory tract from free surfaces of epithelial cells. We now demonstrate that such differential release of HIV-1 and influenza virus is paralleled, at the subcellular level, by viral assembly at different microsegments of the plasma membrane of HeLa cells. HIV-1, but not influenza virus, buds through microdomains containing the tetraspanins CD9 and CD63. Consequently, the anti-CD9 antibody K41, which redistributes its antigen and also other tetraspanins to cell-cell adhesion sites, interferes with HIV-1 but not with influenza virus release. Altogether, these data strongly suggest that the bimodal egress of these two pathogenic viruses, like their entry into target cells, is guided by specific sets of host cell proteins.
Resumo:
BACKGROUND: Although combination antiretroviral therapy (cART) dramatically reduces rates of AIDS and death, a minority of patients experience clinical disease progression during treatment. OBJECTIVE: To investigate whether detection of CXCR4(X4)-specific strains or quantification of X4-specific HIV-1 load predict clinical outcome. METHODS: From the Swiss HIV Cohort Study, 96 participants who initiated cART yet subsequently progressed to AIDS or death were compared with 84 contemporaneous, treated nonprogressors. A sensitive heteroduplex tracking assay was developed to quantify plasma X4 and CCR5 variants and resolve HIV-1 load into coreceptor-specific components. Measurements were analyzed as cofactors of progression in multivariable Cox models adjusted for concurrent CD4 cell count and total viral load, applying inverse probability weights to adjust for sampling bias. RESULTS: Patients with X4 variants at baseline displayed reduced CD4 cell responses compared with those without X4 strains (40 versus 82 cells/microl; P = 0.012). The adjusted multivariable hazard ratio (HR) for clinical progression was 4.8 [95% confidence interval (CI) 2.3-10.0] for those demonstrating X4 strains at baseline. The X4-specific HIV-1 load was a similarly independent predictor, with HR values of 3.7 (95% CI, 1.2-11.3) and 5.9 (95% CI, 2.2-15.0) for baseline loads of 2.2-4.3 and > 4.3 log10 copies/ml, respectively, compared with < 2.2 log10 copies/ml. CONCLUSIONS: HIV-1 coreceptor usage and X4-specific viral loads strongly predicted disease progression during cART, independent of and in addition to CD4 cell count or total viral load. Detection and quantification of X4 strains promise to be clinically useful biomarkers to guide patient management and study HIV-1 pathogenesis.
Resumo:
OBJECTIVE: To investigate predictors of continued HIV RNA viral load suppression in individuals switched to abacavir (ABC), lamivudine (3TC) and zidovudine (ZDV) after successful previous treatment with a protease inhibitor or non-nucleoside reverse transcriptase inhibitor-based combination antiretroviral therapy. DESIGN AND METHODS: An observational cohort study, which included individuals in the Swiss HIV Cohort Study switching to ABC/3TC/ZDV following successful suppression of viral load. The primary endpoint was time to treatment failure defined as the first of the following events: two consecutiveviral load measurements > 400 copies/ml under ABC/3TC/ZDV, one viral load measurement > 400 copies/ml and subsequent discontinuation of ABC/3TC/ZDV within 3 months, AIDS or death. RESULTS: We included 495 individuals; 47 experienced treatment failure in 1459 person-years of follow-up [rate = 3.22 events/100 person-years; 95% confidence interval (95% CI), 2.30-4.14]. Of all failures, 62% occurred in the first year after switching to ABC/3TC/ZDV. In a Cox regression analysis, treatment failure was independently associated with earlier exposure to nucleoside reverse transcriptase inhibitor (NRTI) mono or dual therapy [hazard ratio (HR), 8.02; 95% CI, 4.19-15.35) and low CD4 cell count at the time of the switch (HR, 0.66; 95% CI, 0.51-0.87 by +100 cells/microl up to 500 cells/microl). In patients without earlier exposure to mono or dual therapy, AIDS prior to switch to simplified maintenance therapy was an additional risk factor. CONCLUSIONS: The failure rate was low in patients with suppressed viral load and switch to ABC/3TC/ZDV treatment. Patients with earlier exposure to mono or dual NRTI therapy, low CD4 cell count at time of switch, or AIDS are at increased risk of treatment failure, limiting the use of ABC/3TC/ZDV in these patient groups.
Resumo:
BACKGROUND: CD4+ T-cell recovery in patients with continuous suppression of plasma HIV-1 viral load (VL) is highly variable. This study aimed to identify predictive factors for long-term CD4+ T-cell increase in treatment-naive patients starting combination antiretroviral therapy (cART). METHODS: Treatment-naive patients in the Swiss HIV Cohort Study reaching two VL measurements <50 copies/ml >3 months apart during the 1st year of cART were included (n=1816 patients). We studied CD4+ T-cell dynamics until the end of suppression or up to 5 years, subdivided into three periods: 1st year, years 2-3 and years 4-5 of suppression. Multiple median regression adjusted for repeated CD4+ T-cell measurements was used to study the dependence of CD4+ T-cell slopes on clinical covariates and drug classes. RESULTS: Median CD4+ T-cell increases following VL suppression were 87, 52 and 19 cells/microl per year in the three periods. In the multiple regression model, median CD4+ T-cell increases over all three periods were significantly higher for female gender, lower age, higher VL at cART start, CD4+ T-cell <650 cells/microl at start of the period and low CD4+ T-cell increase in the previous period. Patients on tenofovir showed significantly lower CD4+ T-cell increases compared with stavudine. CONCLUSIONS: In our observational study, long-term CD4+ T-cell increase in drug-naive patients with suppressed VL was higher in regimens without tenofovir. The clinical relevance of these findings must be confirmed in, ideally, clinical trials or large, collaborative cohort projects but could influence treatment of older patients and those starting cART at low CD4+ T-cell levels.
Resumo:
AIMS: Multiple arrhythmia re-inductions were recently shown in His-Purkinje system (HPS) ventricular tachycardia (VT). We hypothesized that HPS VT was a frequent mechanism of repetitive or incessant VT and assessed diagnostic criteria to select patients likely to have HPS VT. METHODS AND RESULTS: Consecutive patients with clustering VT episodes (>3 sustained monomorphic VT within 2 weeks) were included in the analysis. HPS VT was considered plausible in patients with (i) impaired left ventricular function associated with dilated cardiomyopathy or valvular heart disease; or (ii) ECG during VT similar to sinus rhythm QRS or to bundle-branch block QRS. HPS VT was plausible in 12 of 48 patients and HPS VT was demonstrated in 6 of 12 patients (50%, or 13% of the whole study group). Median VT cycle length was 318 ms (250-550). Catheter ablation was successful in all six patients. CONCLUSION: His-Purkinje system VT is found in a significant number of patients with repetitive or incessant VT episodes, and in a large proportion of patients with predefined clinical or electrocardiographic characteristics. Since it is easily amenable to catheter ablation, our data support the screening of all patients with repetitive VT in this regard and an invasive approach in a selected group of patients.
Resumo:
BACKGROUND: Acute respiratory infections (ARI) are a major cause of morbidity in infancy worldwide, with cough and wheeze being alarming symptoms to parents. We aimed to analyze in detail the viral aetiology of ARI with such symptoms in otherwise healthy infants, including rhinoviruses and recently discovered viruses such as human metapneumovirus (HMPV), coronavirus NL63 and HKU1, and human bocavirus (HBoV). METHODS: We prospectively followed 197 unselected infants during their first year of life and assessed clinical symptoms by weekly standardized interviews. At the first ARI with cough or wheeze, we analyzed nasal swabs by sensitive individual real time polymerase chain reaction assays targeting 16 different respiratory viruses. RESULTS: All 112 infants who had an ARI had cough, and 39 (35%) had wheeze. One or more respiratory viruses were found in 88 of 112 (79%) cases. Fifteen (17%) dual and 3 (3%) triple infections were recorded. Rhino- (23% of all viruses) and coronaviruses (18%) were most common, followed by parainfluenza viruses (17%), respiratory syncytial virus (RSV) (16%), HMPV (13%), and HBoV (5%). Together rhinoviruses, coronaviruses, HMPV, and HBoV accounted for 60% (65 of 109) of viruses. Although symptom scores and need for general practitioner (GP) consultations were highest in infants infected with RSV, they were similar in infants infected with other viruses. Viral shedding at 3 weeks occurred in 20% of cases. CONCLUSIONS: Rhinoviruses, coronaviruses, HMPV, and HBoV are common pathogens associated with respiratory symptoms in otherwise healthy infants. They should be considered in the differential diagnosis of the aetiology of ARI in this age group.
Resumo:
Before entering the central nervous system (CNS) immune cells have to penetrate any one of its barriers, namely either the endothelial blood-brain barrier, the epithelial blood-cerebrospinal fluid barrier or the tanycytic barrier around the circumventricular organs, all of which maintain homeostasis within the CNS. The presence of these barriers in combination with the lack of lymphatic vessels and the absence of classical MHC-positive antigen presenting cells characterizes the CNS as an immunologically privileged site. In multiple sclerosis a large number of inflammatory cells gains access to the CNS parenchyma. Studies performed in experimental autoimmune encephalomyelitis (EAE), a rodent model for multiple sclerosis, have enabled us to understand some of the molecular mechanisms involved in immune cell entry into the CNS. In particular, the realization that /alpha4-integrins play a predominant role in leukocyte trafficking to the CNS has led to the development of a novel drug for the treatment of relapsing-remitting multiple sclerosis, which targets /alpha4-integrin mediated immune cell migration to the CNS. At the same time, the involvement of other adhesion and signalling molecules in this process remains to be investigated and novel molecules contributing to immune cell entry into the CNS are still being identified. The entire process of immune cell trafficking into the CNS is strictly controlled by the brain barriers not only under physiological conditions but also during neuroinflammation, when some barrier properties are lost. Thus, immune cell entry into the CNS critically depends on the unique characteristics of the brain barriers maintaining CNS homeostasis.
Resumo:
In multiple sclerosis and in its animal model experimental autoimmune encephalomyelitis (EAE), inflammatory cells migrate across the highly specialized endothelial blood-brain barrier (BBB) and gain access to the central nervous system (CNS). It is well established that leukocyte recruitment across this vascular bed is unique due to the predominant involvement of alpha4-integrins in mediating the initial contact to as well as firm adhesion with the endothelium. In contrast, the involvement of the selectins, L-selectin, E- and P-selectin and their respective carbohydrate ligands such as P-selectin glycoprotein (PSGL)-1 in this process has been controversially discussed. Intravital microscopic analysis of immune cell interaction with superficial brain vessels demonstrates a role for E- and P-selectin and their common ligand PSGL-1 in lymphocyte rolling. However, E- and P-selectin-deficient SJL- or C57Bl/6 mice or PSGL-1-deficient C57Bl/6 mice develop EAE indistinguishable from wild-type mice. Considering these apparently discrepant observations, it needs to be discussed whether the molecular mechanisms involved in leukocyte trafficking across superficial brain vessels are irrelevant for EAE pathogenesis or whether the therapeutic efficacy of targeting alpha4-integrins in EAE is truly dependent on the inhibition of leukocyte trafficking across the BBB.
Resumo:
Discussion on viruses from mild to wild and how using "omnics" (such as genomes, mRNA, proteins, metabolites) can help uncover unexpected biology.
Resumo:
Gene transfer using electroporation is an essential method for the study of developmental biology, especially to understand the internal control of degeneration and apoptosis of the muscle cells that occurs earlier and quicker than the usual degeneration process occurring by aging. Such experimental studies may have a role in developing new strategies for treating patients suffering from inherited primary myopathies such as Duchenne muscular dystrophy (DMD). The present study was designed to evaluate the feasibility of electroporation mediated transfer of reporter genes to the diaphragm in vivo. This is the first report of gene transfer of naked plasmid DNA into the diaphragm muscle in vivo using electroporation. Our results showed that in vivo gene transfer of naked plasmid DNA into the diaphragm muscle using electroporation is feasible.
Resumo:
OBJECTIVES: To synthesize the evidence on the risk of HIV transmission through unprotected sexual intercourse according to viral load and treatment with combination antiretroviral therapy (ART). DESIGN: Systematic review and meta-analysis. METHODS: We searched Medline, Embase and conference abstracts from 1996-2009. We included longitudinal studies of serodiscordant couples reporting on HIV transmission according to plasma viral load or use of ART and used random-effects Poisson regression models to obtain summary transmission rates [with 95% confidence intervals, (CI)]. If there were no transmission events we estimated an upper 97.5% confidence limit. RESULTS: We identified 11 cohorts reporting on 5021 heterosexual couples and 461 HIV-transmission events. The rate of transmission overall from ART-treated patients was 0.46 (95% CI 0.19-1.09) per 100 person-years, based on five events. The transmission rate from a seropositive partner with viral load below 400 copies/ml on ART, based on two studies, was zero with an upper 97.5% confidence limit of 1.27 per 100 person-years, and 0.16 (95% CI 0.02-1.13) per 100 person-years if not on ART, based on five studies and one event. There were insufficient data to calculate rates according to the presence or absence of sexually transmitted infections, condom use, or vaginal or anal intercourse. CONCLUSION: Studies of heterosexual discordant couples observed no transmission in patients treated with ART and with viral load below 400 copies/ml, but data were compatible with one transmission per 79 person-years. Further studies are needed to better define the risk of HIV transmission from patients on ART.
Resumo:
BACKGROUND: In high-income countries, viral load is routinely measured to detect failure of antiretroviral therapy (ART) and guide switching to second-line ART. Viral load monitoring is not generally available in resource-limited settings. We examined switching from nonnucleoside reverse transcriptase inhibitor (NNRTI)-based first-line regimens to protease inhibitor-based regimens in Africa, South America and Asia. DESIGN AND METHODS: Multicohort study of 17 ART programmes. All sites monitored CD4 cell count and had access to second-line ART and 10 sites monitored viral load. We compared times to switching, CD4 cell counts at switching and obtained adjusted hazard ratios for switching (aHRs) with 95% confidence intervals (CIs) from random-effects Weibull models. RESULTS: A total of 20 113 patients, including 6369 (31.7%) patients from 10 programmes with access to viral load monitoring, were analysed; 576 patients (2.9%) switched. Low CD4 cell counts at ART initiation were associated with switching in all programmes. Median time to switching was 16.3 months [interquartile range (IQR) 10.1-26.6] in programmes with viral load monitoring and 21.8 months (IQR 14.0-21.8) in programmes without viral load monitoring (P < 0.001). Median CD4 cell counts at switching were 161 cells/microl (IQR 77-265) in programmes with viral load monitoring and 102 cells/microl (44-181) in programmes without viral load monitoring (P < 0.001). Switching was more common in programmes with viral load monitoring during months 7-18 after starting ART (aHR 1.38; 95% CI 0.97-1.98), similar during months 19-30 (aHR 0.97; 95% CI 0.58-1.60) and less common during months 31-42 (aHR 0.29; 95% CI 0.11-0.79). CONCLUSION: In resource-limited settings, switching to second-line regimens tends to occur earlier and at higher CD4 cell counts in ART programmes with viral load monitoring compared with programmes without viral load monitoring.