997 resultados para vapor transport equilibration (VTE)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] The aims of this work were (i) to evaluate the potential of nanostructured lipid carriers (NLCs) as a tool to 24 enhance the oral bioavailability of poorly soluble compounds using saquinavir (SQV), a BCS class IV drug 25 and P-gp substrate as a model drug, and (ii) to study NLC transport mechanisms across the intestinal barrier. 26 Three different NLC formulations were evaluated. SQV transport across Caco-2 monolayers was enhanced up 27 to 3.5-fold by NLCs compared to SQV suspension. M cells did not enhance the transport of NLCs loaded with 28 SQV. The size and amount of surfactant in the NLCs influenced SQV's permeability, the transcytosis pathway 29 and the efflux of SQV by P-gp. An NLC of size 247 nm and 1.5% (w/v) surfactant content circumvented P-gp 30 efflux and used both caveolae- and clathrin-mediated transcytosis, in contrast to the other NLC formulations, 31 which used only caveolae-mediated transcytosis. By modifying critical physicochemical parameters of the 32 NLC formulation, we were thus able to overcome the P-gp drug efflux and alter the transcytosis mechanism 33 of the nanoparticles. These findings support the use of NLCs approaches for oral delivery of poorly 34 water-soluble P-gp substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density functional theory/molecular dynamics simulations were employed to give insights into the mechanism of voltage generation based on a water-filled single-walled boron-nitrogen nanotube (SWBNNT). Our calculations showed that (1) the transport properties of confined water in a SWBNNT are different from those of bulk water in view of configuration, the diffusion coefficient, the dipole orientation, and the density distribution, and (2) a voltage difference of several millivolts would generate between the two ends of a SWBNNT due to interactions between the water dipole chains and charge carriers in the tube. Therefore, this structure of a water-filled SWBNNT can be a promising candidate for a synthetic nanoscale power cell as well as a practical nanopower harvesting device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density functional theory/molecular dynamics simulations were employed to give insights into the mechanism of voltage generation based on a water-filled single-walled boron-nitrogen nanotube (SWBNNT). Our calculations showed that (1) the transport properties of confined water in a SWBNNT are different from those of bulk water in view of configuration the diffusion coefficient the dipole orientation and the density distribution and (2) a voltage difference of several millivolts would generate between the two ends of a SWBNNT due to interactions between the water dipole chains and charge carriers in the tube. Therefore this structure of a water-filled SWBNNT can be a promising candidate for a synthetic nanoscale power cell as well as a practical nanopower harvesting device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Newfound attention has been given to solute transport in nanochannels. Because the electric double layer (EDL) thickness is comparable to characteristic channel dimensions, nanochannels have been used to separate ionic species with a constant charge-to-size ratio (i.e., electrophoretic mobility) that otherwise cannot be separated in electroosmotic or pressure- driven flow along microchannels. In nanochannels, the electrical fields within the EDL cause transverse ion distributions and thus yield charge-dependent mean ion speeds in the flow. Surface roughness is usually inevitable during microfabrication of microchannels or nanochannels. Surface roughness is usually inevitable during the fabrication of nanochannels. In the present study, we develop a numerical model to investigate the transport of charged solutes in nanochannels with hundreds of roughness-like structures. The model is based on continuum theory that couples Navier-Stokes equations for flows, Poisson-Boltzmann equation for electrical fields, and Nernst-Planck equation for solute transports. Different operating conditions are considered and the solute transport patterns in rough channels are compared with those in smooth channels. Results indicate that solutes move slower in rough nanochannels than in smooth ones for both pressure- driven and electroosmotic flows. Moreover, solute separation can be significantly improved by surface roughness under certain circumstances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have theoretically investigated ballistic electron transport through a combination of magnetic-electric barrier based on a vertical ferromagnet/two-dimensional electron gas/ferromagnet sandwich structure, which can be experimentally realized by depositing asymmetric metallic magnetic stripes both on top and bottom of modulation-doped semiconductor heterostructures. Our numerical results have confirmed the existence of finite spin polarization even though only antisymmetric stray field B-z is considered. By switching the relative magnetization of ferromagnetic layers, the device in discussion shows evident magnetoconductance. In particular, both spin polarization and magnetoconductance can be efficiently enhanced by proper electrostatic barrier up to the optimal value relying on the specific magnetic-electric modulation. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3041477]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rayleigh-Marangoni-B,nard instability in a system consisting of a horizontal liquid layer and its own vapor has been investigated. The two layers are separated by a deformable evaporation interface. A linear stability analysis is carried out to study the convective instability during evaporation. In previous works, the interface is assumed to be under equilibrium state. In contrast with previous works, we give up the equilibrium assumption and use Hertz-Knudsen's relation to describe the phase change under non-equilibrium state. The influence of Marangoni effect, gravitational effect, degree of non-equilibrium and the dynamics of the vapor on the instability are discussed.