977 resultados para tree height growth
Resumo:
Assessing diversity is among the major tasks in ecology and conservation science. In ecological and conservation studies, epiphytic cryptogams are usually sampled up to accessible heights in forests. Thus, their diversity, especially of canopy specialists, likely is underestimated. If the proportion of those species differs among forest types, plot-based diversity assessments are biased and may result in misleading conservation recommendations. We sampled bryophytes and lichens in 30 forest plots of 20 m x 20 m in three German regions, considering all substrates, and including epiphytic litter fall. First, the sampling of epiphytic species was restricted to the lower 2 m of trees and shrubs. Then, on one representative tree per plot, we additionally recorded epiphytic species in the crown, using tree climbing techniques. Per tree, on average 54% of lichen and 20% of bryophyte species were overlooked if the crown was not been included. After sampling all substrates per plot, including the bark of all shrubs and trees, still 38% of the lichen and 4% of the bryophyte species were overlooked if the tree crown of the sampled tree was not included. The number of overlooked lichen species varied strongly among regions. Furthermore, the number of overlooked bryophyte and lichen species per plot was higher in European beech than in coniferous stands and increased with increasing diameter at breast height of the sampled tree. Thus, our results indicate a bias of comparative studies which might have led to misleading conservation recommendations of plot-based diversity assessments.
Resumo:
Tree populations at the rear edge of species distribution are sensitive to climate stress and drought. However, growth responses of these tree populations to those stressors may vary along climatic gradients. To analyze growth responses to climate and drought using dendrochronology in rear-edge Pinus nigra populations located along an aridity gradient. Tree-ring width chronologies were built for the twentieth century and related to monthly climatic variables, a drought index (Standardized Precipitation-Evapotranspiration Index), and two atmospheric circulation patterns (North Atlantic and Western Mediterranean Oscillations). Growth was enhanced by wet and cold previous autumns and warm late winters before tree-ring formation. The influence of the previous year conditions on growth increased during the past century. Growth was significantly related to North Atlantic and Western Mediterranean Oscillations in two out of five sites. The strongest responses of growth to the drought index were observed in the most xeric sites. Dry conditions before tree-ring formation constrain growth in rear-edge P. nigra populations. The comparisons of climate-growth responses along aridity gradients allow characterizing the sensitivity of relict stands to climate warming.
Resumo:
Hunter syndrome (mucopolysaccharidosis type II) is a rare and life-limiting multisystemic disorder with an X-linked recessive pattern of inheritance. Short stature is a prominent feature of this condition. This analysis aimed to investigate the effects of enzyme replacement therapy with idursulfase on growth in patients enrolled in HOS - the Hunter Outcome Survey which is a multinational observational database. As of Jan 2012, height data before treatment were available for 567 of 740 males followed prospectively after HOS entry. Cross-sectional analysis showed that short stature became apparent after approximately 8 years of age; before this, height remained within the normal range. Age-corrected standardized height scores (z-scores) before and after treatment were assessed using piecewise regression model analysis in 133 patients (8-15 years of age at treatment start; data available on ≥ 1 occasion within +/-24 months of treatment start; growth hormone-treated patients excluded). Results showed that the slope after treatment (slope=-0.005) was significantly improved compared with before treatment (slope=-0.043) (difference=0.038, p=0.004). Analysis of covariates (age at treatment start, cognitive involvement, presence of puberty at the start of ERT, mutation type, functional classification), showed a significant influence on growth of mutation type (height deficit in terms of z-scores most pronounced in patients with deletions/large rearrangements/nonsense mutations, p<0.0001) and age (most pronounced in the 12-15-year group, p<0.0001). Cognitive involvement, pubertal status at the start of ERT and functional classification were not related to the growth deficit or response to treatment. In conclusion, the data showed an improvement in growth rate in patients with Hunter syndrome following idursulfase treatment.
Resumo:
Rockfall is a widespread and hazardous process in mountain environments, but data on past events are only rarely available. Growth-ring series from trees impacted by rockfall were successfully used in the past to overcome the lack of archival records. Dendrogeomorphic techniques have been demonstrated to allow very accurate dating and reconstruction of spatial and temporal rockfall activity, but the approach has been cited to be labor intensive and time consuming. In this study, we present a simplified method to quantify rockfall processes on forested slopes requiring less time and efforts. The approach is based on a counting of visible scars on the stem surface of Common beech (Fagus sylvatica L.). Data are presented from a site in the Inn valley (Austria), where rocks are frequently detached from an ~ 200-m-high, south-facing limestone cliff. We compare results obtained from (i) the “classical” analysis of growth disturbances in the tree-ring series of 33 Norway spruces (Picea abies (L.) Karst.) and (ii) data obtained with a scar count on the stem surface of 50 F. sylvatica trees. A total of 277 rockfall events since A.D. 1819 could be reconstructed from tree-ring records of P. abies, whereas 1140 scars were observed on the stem surface of F. sylvatica. Absolute numbers of rockfalls (and hence return intervals) vary significantly between the approaches, and the mean number of rockfalls observed on the stem surface of F. sylvatica exceeds that of P. abies by a factor of 2.7. On the other hand, both methods yield comparable data on the spatial distribution of relative rockfall activity. Differences may be explained by a great portion of masked scars in P. abies and the conservation of signs of impacts on the stem of F. sylvatica. Besides, data indicate that several scars on the bark of F. sylvatica may stem from the same impact and thus lead to an overestimation of rockfall activity.
Resumo:
Second-generation antipsychotics (SGAs) are increasingly prescribed to treat psychiatric symptoms in pediatric patients infected with HIV. We examined the relationship between prescribed SGAs and physical growth in a cohort of youth with perinatally acquired HIV-1 infection. Pediatric AIDS Clinical Trials Group (PACTG), Protocol 219C (P219C), a multicenter, longitudinal observational study of children and adolescents perinatally exposed to HIV, was conducted from September 2000 until May 2007. The analysis included P219C participants who were perinatally HIV-infected, 3-18 years old, prescribed first SGA for at least 1 month, and had available baseline data prior to starting first SGA. Each participant prescribed an SGA was matched (based on gender, age, Tanner stage, baseline body mass index [BMI] z score) with 1-3 controls without antipsychotic prescriptions. The main outcomes were short-term (approximately 6 months) and long-term (approximately 2 years) changes in BMI z scores from baseline. There were 236 participants in the short-term and 198 in the long-term analysis. In linear regression models, youth with SGA prescriptions had increased BMI z scores relative to youth without antipsychotic prescriptions, for all SGAs (short-term increase = 0.192, p = 0.003; long-term increase = 0.350, p < 0.001), and for risperidone alone (short-term = 0.239, p = 0.002; long-term = 0.360, p = 0.001). Participants receiving both protease inhibitors (PIs) and SGAs showed especially large increases. These findings suggest that growth should be carefully monitored in youth with perinatally acquired HIV who are prescribed SGAs. Future research should investigate the interaction between PIs and SGAs in children and adolescents with perinatally acquired HIV infection.
Resumo:
OBJECTIVE: To examine the relationships between physical growth and medications prescribed for symptoms of attention-deficit hyperactivity disorder in children with HIV. METHODS: Analysis of data from children with perinatally acquired HIV (N = 2251; age 3-19 years), with and without prescriptions for stimulant and nonstimulant medications used to treat attention-deficit hyperactivity disorder, in a long-term observational study. Height and weight measurements were transformed to z scores and compared across medication groups. Changes in z scores during a 2-year interval were compared using multiple linear regression models adjusting for selected covariates. RESULTS: Participants with (n = 215) and without (n = 2036) prescriptions were shorter than expected based on US age and gender norms (p < .001). Children without prescriptions weighed less at baseline than children in the general population (p < .001) but gained height and weight at a faster rate (p < .001). Children prescribed stimulants were similar to population norms in baseline weight; their height and weight growth velocities were comparable with the general population and children without prescriptions (for weight, p = .511 and .100, respectively). Children prescribed nonstimulants had the lowest baseline height but were similar to population norms in baseline weight. Their height and weight growth velocities were comparable with the general population but significantly slower than children without prescriptions (p = .01 and .02, respectively). CONCLUSION: The use of stimulants to treat symptoms of attention-deficit hyperactivity disorder does not significantly exacerbate the potential for growth delay in children with HIV and may afford opportunities for interventions that promote physical growth. Prospective studies are needed to confirm these findings.
Resumo:
The presence of soluble carbohydrates in the cambial zone, either from sugars recently produced during photosynthesis or from starch remobilized from storage organs, is necessary for radial tree growth. However, considerable uncertainties on carbohydrate dynamics and the consequences on tree productivity exist. This study aims to better understand the variation in different carbon pools at intra-annual resolution by quantifying how cambial zone sugar and starch concentrations fluctuate over the season and in relation to cambial phenology. A comparison between two physiologically different species growing at the same site, i.e., the evergreen Picea abies Karst. and the deciduous Larix decidua Mill., and between L. decidua from two contrasting elevations, is presented to identify mechanisms of growth limitation. Results indicate that the annual cycle of sugar concentration within the cambial zone is coupled to the process of wood formation. The highest sugar concentration is observed when the number of cells in secondary wall formation and lignification stages is at a maximum, subsequent to most radial growth. Starch disappears in winter, while other freeze-resistant non-structural carbohydrates (NSCs) increase. Slight differences in NSC concentration between species are consistent with the differing climate sensitivity of the evergreen and deciduous species investigated. The general absence of differences between elevations suggests that the cambial activity of trees growing at the treeline was not limited by the availability of carbohydrates at the cambial zone but instead by environmental controls on the growing season duration.
Resumo:
To improve our understanding of the Asian monsoon system, we developed a hydroclimate reconstruction in a marginal monsoon shoulder region for the period prior to the industrial era. Here, we present the first moisture sensitive tree-ring chronology, spanning 501 years for the Dieshan Mountain area, a boundary region of the Asian summer monsoon in the northeastern Tibetan Plateau. This reconstruction was derived from 101 cores of 68 old-growth Chinese pine (Pinus tabulaeformis) trees. We introduce a Hilbert–Huang Transform (HHT) based standardization method to develop the tree-ring chronology, which has the advantages of excluding non-climatic disturbances in individual tree-ring series. Based on the reliable portion of the chronology, we reconstructed the annual (prior July to current June) precipitation history since 1637 for the Dieshan Mountain area and were able to explain 41.3% of the variance. The extremely dry years in this reconstruction were also found in historical documents and are also associated with El Niño episodes. Dry periods were reconstructed for 1718–1725, 1766–1770 and 1920–1933, whereas 1782–1788 and 1979–1985 were wet periods. The spatial signatures of these events were supported by data from other marginal regions of the Asian summer monsoon. Over the past four centuries, out-of-phase relationships between hydroclimate variations in the Dieshan Mountain area and far western Mongolia were observed during the 1718–1725 and 1766–1770 dry periods and the 1979–1985 wet period.
Resumo:
Growing evidence suggests environmental change to be most severe across the semi-arid subtropics, with past, present and projected drying of the Mediterranean Basin posing a key multidisciplinary challenge. Consideration of a single climatic factor, however, often fails to explain spatiotemporal growth dynamics of drought-prone ecosystems. Here, we present annually resolved and absolutely dated ring width measurements of 871 Scots pines (Pinus sylvestris) from 18 individual plot sites in the Central Spanish Pinar Grande forest reserve. Although comprising tree ages from 6 to 175 years, this network correlates surprisingly well with the inverse May–July diurnal temperature range (r = 0.84; p < 0.00011956–2011). Ring width extremes were triggered by pressure anomalies of the North Atlantic Oscillation, and the long-term growth decline coincided with Iberian-wide drying since the mid-1970s. Climate model simulations not only confirm this negative trend over the last decades but also project drought to continuously increase over the 21st century. Associated ecological effects and socio-economic consequences should be considered to improve adaptation strategies of agricultural and forest management, as well as biodiversity conservation and ecosystem service.
Resumo:
Aim To evaluate the climate sensitivity of model-based forest productivity estimates using a continental-scale tree-ring network. Location Europe and North Africa (30–70° N, 10° W–40° E). Methods We compiled close to 1000 annually resolved records of radial tree growth for all major European tree species and quantified changes in growth as a function of historical climatic variation. Sites were grouped using a neural network clustering technique to isolate spatiotemporal and species-specific climate response patterns. The resulting empirical climate sensitivities were compared with the sensitivities of net primary production (NPP) estimates derived from the ORCHIDEE-FM and LPJ-wsl dynamic global vegetation models (DGVMs). Results We found coherent biogeographic patterns in climate response that depend upon (1) phylogenetic controls and (2) ambient environmental conditions delineated by latitudinal/elevational location. Temperature controls dominate forest productivity in high-elevation and high-latitude areas whereas moisture sensitive sites are widespread at low elevation in central and southern Europe. DGVM simulations broadly reproduce the empirical patterns, but show less temperature sensitivity in the boreal zone and stronger precipitation sensitivity towards the mid-latitudes. Main conclusions Large-scale forest productivity is driven by monthly to seasonal climate controls, but our results emphasize species-specific growth patterns under comparable environmental conditions. Furthermore, we demonstrate that carry-over effects from the previous growing season can significantly influence tree growth, particularly in areas with harsh climatic conditions – an element not considered in most current-state DGVMs. Model–data discrepancies suggest that the simulated climate sensitivity of NPP will need refinement before carbon-cycle climate feedbacks can be accurately quantified.
Resumo:
Climate affects the timing, rate and dynamics of tree growth, over time scales ranging from seconds to centuries. Monitoring how a tree's stem radius varies over these time scales can provide insight into intra-annual stem dynamics and improve our understanding of climate impacts on tree physiology and growth processes. Here, we quantify the response of radial conifer stem size to environmental fluctuations via a novel assessment of tree circadian cycles. We analyze four years of sub-hourly data collected from 56 larch and spruce trees growing along a natural temperature gradient of ∼6 °C in the central Swiss Alps. During the growing season, tree stem diameters were greatest at mid-morning and smallest in the late evening, reflecting the daily cycle of water uptake and loss. Along the gradient, amplitudes calculated from the stem radius cycle were ∼50% smaller at the upper site (∼2200 m a.s.l.) relative to the lower site (∼800 m a.s.l.). We show changes in precipitation, temperature and cloud cover have a substantial effect on typical growing season diurnal cycles; amplitudes were nine times smaller on rainy days (>10 mm), and daily amplitudes are approximately 40% larger when the mean daily temperature is 15–20 °C than when it is 5–10 °C. We find that over the growing season in the sub-alpine forests, spruce show greater daily stem water movement than larch. However, under projected future warming, larch could experience up to 50% greater stem water use, which may severely affect future growth on already dry sites. Our data further indicate that because of the confounding influences of radial growth and short-term water dynamics on stem size, conventional methodology probably overstates the effect of water-linked meteorological variables (i.e. precipitation and relative humidity) on intra-annual tree growth. We suggest future studies use intra-seasonal measurements of cell development and consider whether climatic factors produce reversible changes in stem diameter. These study design elements may help researchers more accurately quantify and attribute changes in forest productivity in response to future warming.
Resumo:
Spontaneous contractions of the fetal airways are a well recognized but poorly characterized phenomenon. In the present study spontaneous narrowing of the airways was analyzed in freshly isolated lungs from early to late gestation in fetal pigs and rabbits and in cultured fetal mouse lungs. Propagating waves of contraction traveling proximal to distal were observed in fresh lungs throughout gestation which displaced the lung liquid along the lumen. In the pseudoglandular and canalicular stages (fetal pigs) the frequency ranged from 2.3 to 3.3 contractions/min with a 39 to 46% maximum reduction of lumen diameter. In the saccular stage (rabbit) the frequency was 10 to 12/min with a narrowing of approximately 30%. In the organ cultures the waves of narrowing started at the trachea in whole lungs, or at the main bronchus in lobes (5.2 +/- 1.5 contractions/min, 22 +/- 8% reduction of lumen diameter), and as they proceeded distally along the epithelial tubes the luminal liquid was shifted toward the terminal tubules, which expanded the endbuds. As the tubules relaxed the flow of liquid was reversed. Thus the behavior of airway smooth muscle in the fetal lung is phasic in type (like gastrointestinal muscle) in contrast to that in postnatal lung, where it is tonic. An intraluminal positive pressure of 2.33 +/- 0.77 cm H(2)O was recorded in rabbit fetal trachea. It is proposed that the active tone of the smooth muscle maintains the positive intraluminal pressure and acts as a stimulus to lung growth via the force exerted across the airway wall and adjacent parenchyma. The expansion of the compliant endbuds by the fluid shifts at the airway tip may promote their growth into the surrounding mesenchyme.
Resumo:
Tree water deficit estimated by measuring water-related changes in stem radius (DeltaW) was compared with tree water deficit estimated from the output of a simple, physiologically reasonable model (DeltaW(E)), with soil water potential (Psi(soil)) and atmospheric vapor pressure deficit (VPD) as inputs. Values of DeltaW were determined by monitoring stem radius changes with dendrometers and detrending the results for growth, We followed changes in DeltaW and DeltaW(E) in Pinus sylvestris L. and Quercus pubescens Willd. over 2 years at a dry site (2001-2002; Salgesch, Wallis) and in Picea abies (L.) Karst. for 1 year at a wet site (1998; Davos, Graubuenden) in the Swiss Alps. The seasonal courses of DeltaW in deciduous species and in conifers at the same site were similar and could be largely explained by variation in DeltaW(E). This finding strongly suggests that DeltaW, despite the known species-specific differences in stomatal response to microclimate, is mainly explained by a combination of atmospheric and soil conditions. Consequently, we concluded that trees are unable to maintain any particular DeltaW. Either Psi(soil) or VPD alone provided poorer estimates of AWthan a model incorporating both factors. As a first approximation of DeltaW(E), Psi(soil) can be weighted so that the negative mean Psi(soil) reaches 65 to 75% of the positive mean daytime VPD over a season (Q. pubescens: similar to65%, P abies: similar to70%, P sylvestris: similar to75%). The differences in DeltaW among species can be partially explained by a different weighting of Psi(soil) against VPD. The DeltaW of P. sylvestris was more dependent on Psi(soil) than that of Q. pubescens, but less than that of P. abies, and was less dependent on VPD than that of P. abies and Q. pubescens. The model worked well for P. abies at the wet site and for Q. pubescens and P. sylvestris at the dry site, and may be useful for estimating water deficit in other tree species.
Resumo:
Occasional strong droughts are an important feature of the climatic environment of tropical rain forest in much of Borneo. This paper compares the response of a lowland dipterocarp forest at Danum, Sabah, in a period of low (LDI) and a period of high (HDI) drought intensity (1986-96, 9.98 y;1996-99, 2.62 y). Mean annual drought intensity was two-fold higher in the HDI than LDI period (1997 v. 976 mm), and each period had one moderately strong main drought (viz. 1992, 1998). Mortality of `all' trees greater than or equal to 10 cm gbh (girth at breast height) and stem growth rates of `small' trees 10less than or equal to50 cm gbh were measured in sixteen 0.16-ha subplots (half on ridge, half on lower slope sites) within two 4-ha plots. These 10-50-cm trees were composed largely of true understorey species. A new procedure was developed to correct for the effect of differences in length of census interval when comparing tree mortality rates. Mortality rates of small trees declined slightly but not significantly between the LDI and HDI periods (1.53 to 1.48% y(-1)): mortality of all trees showed a similar pattern. Relative growth rates declined significantly by 23% from LDI to HDI periods (11.1 to 8.6 mm m(-1) y(-1)): for absolute growth rates the decrease was 28% (2.45 to 1.77 mm y(-1)). Neither mortality nor growth rates were significantly influenced by topography. For small trees, across subplots, absolute growth rate was positively correlated in the LDI period, but negatively correlated in the HDI period, with mortality rate. There was no consistent pattern in the responses among the 19 most abundant species (n greater than or equal to 50 trees) which included a proposed drought-tolerant guild. In terms of tree survival, the forest at Danum was resistant to increasing drought intensity, but showed decreased stem growth attributable to increasing water stress.
Resumo:
In a first step to obtain a proxy record of past climatic events (including the El Ni (n) over tildeo-Southern Oscillation) in the normally aseasonal tropical environment of Sabah, a radial segment from a recently fallen dipterocarp (Shorea Superba) was radiocarbon dated and subjected to carbon isotope analysis. The high-precision radiocarbon results fell into the ambiguous modern plateau where several calibrated dates can exist for each sample. Dating was achieved by wiggle matching using a Bayesian approach to calibration. Using the defined growth characteristics of Shorea superba, probability density distributions were calculated and improbable dates rejected. It was found that the tree most likely started growing around AD 1660-1685. A total of 173 apparent growth increments were measured and, therefore, it could be determined that the tree formed one ring approximately every two years. Stable carbon isotope values were obtained from resin-extracted wholewood from each ring. Carbon cycling is evident in the `juvenile effect', resulting from the assimilation of respired carbon dioxide and lower light levels below the canopy, and in the `anthropogenic effect' caused by increased industrial activity in the late-nineteenth and twentieth centuries. This study demonstrates that palaeoenvironmental information can be obtained from trees growing in aseasonal environments, where climatic conditions prevent the formation of well-defined annual rings.