965 resultados para time dependent thermodynamics
Resumo:
We reinvestigate the dynamics of the grow and collapse of Bose-Einstein condensates in a system of trapped ultracold atoms with negative scattering lengths, and found a new behavior in the long time scale evolution: the number of atoms can go far beyond the static stability limit. The condensed state is described by the solution of the time-dependent nonlinear Schrödinger equation, in a model that includes atomic feeding and three-body dissipation. Our results for the model show that, by changing the feeding parameter and when a substantial depletion of the ground-state exists, a chaotic behavior is found. We consider a criterion proposed by Deissler and Kaneko [Phys. Lett. A 119, 397 (1987)] to diagnose spatiotemporal chaos. ©2000 The American Physical Society.
Resumo:
In three-dimensional trapped Bose-Einstein condensate (BEC), described by the time-dependent Gross-Pitaevskii-Ginzburg equation, we study the effect of initial conditions on stability using a Gaussian variational approach and exact numerical simulations. We also discuss the validity of the criterion for stability suggested by Vakhitov and Kolokolov. The maximum initial chirp (initial focusing defocusing of cloud) that can lead a stable condensate to collapse even before the number of atoms reaches its critical limit is obtained for several specific cases. When we consider two- and three-body nonlinear terms, with negative cubic and positive quintic terms, we have the conditions for the existence of two phases in the condensate. In this case, the magnitude of the oscillations between the two phases are studied considering sufficient large initial chirps. The occurrence of collapse in a BEC with repulsive two-body interaction is also shown to be possible.
Resumo:
The conditions for the existence of autosolitons were considered in trapped Bose-Einstein condensates with attractive atomic interactions. The expression for the parameters of the autosoliton was derived using the time-dependent variational approach for the nonconservative 3-dimensional Gross-pitaevskii equation and their stability was checked. The results were in agreement with the exact numerical calculations. It was shown that the transition from unstable to stable point solely depends on the magnitude of the parameters.
Resumo:
A numerical study of the time-dependent Gross-Pitaevskii equation for an axially symmetric trap to obtain insight into the free expansion of vortex states of BEC is presented. As such, the ratio of vortex-core radius to radia rms radius xc/xrms(<1) is found to play an interesting role in the free expansion of condensed vortex states. the larger this ratio, the more prominent is the vortex core and the easier is the possibility of experimental detection of vortex states.
Resumo:
Numerical simulations based on the time-dependent mean-field Gross-Pitaevskii equation was performed to explain the dynamics of collapsing and exploding Bose-Einstein condensates (BEC) of 85Rb atoms. The atomic interaction was manipulated by an external magnetic field via a Feshbach resonance. On changing the scattering length of atomic interaction from a positive to a large negative value, the condensate collapsed and ejected atoms via explosion.
Resumo:
The dynamics of small repulsive Bose-Einstein condensed vortex states of 85Rb atoms in a cylindrical traps with low angular momentum was studied. The time-dependent mean-field Gross-Pitaevskii equation was used for the study. The condensates collapsed and atoms ejected via explosion and a remnant condensate with a smaller number of atoms emerges that survived for a long time.
Resumo:
We perform a systematic numerical study, based on the time-dependent Gross-Pitaevskii equation, of jet formation in collapsing and exploding Bose-Einstein condensates as in the experiment by Donley et al (2001 Nature 412 295). In the actual experiment, via a Feshbach resonance, the scattering length of atomic interaction was suddenly changed from positive to negative on a pre-formed condensate. Consequently, the condensate collapsed and ejected atoms via explosion. On disruption of the collapse by suddenly changing the scattering length to zero, a radial jet of atoms was formed in the experiment. We present a satisfactory account of jet formation under the experimental conditions and also make predictions beyond experimental conditions which can be verified in future experiments.
Resumo:
The biggest advantage of plasma immersion ion implantation (PIII) is the capability of treating objects with irregular geometry without complex manipulation of the target holder. The effectiveness of this approach relies on the uniformity of the incident ion dose. Unfortunately, perfect dose uniformity is usually difficult to achieve when treating samples of complex shape. The problems arise from the non-uniform plasma density and expansion of plasma sheath. A particle-in-cell computer simulation is used to study the time-dependent evolution of the plasma sheath surrounding two-dimensional objects during process of plasma immersion ion implantation. Before starting the implantation phase, steady-state nitrogen plasma is established inside the simulation volume by using ionization of gas precursor with primary electrons. The plasma self-consistently evolves to a non-uniform density distribution, which is used as initial density distribution for the implantation phase. As a result, we can obtain a more realistic description of the plasma sheath expansion and dynamics. Ion current density on the target, average impact energy, and trajectories of the implanted ions were calculated for three geometrical shapes. Large deviations from the uniform dose distribution have been observed for targets with irregular shapes. In addition, effect of secondary electron emission has been included in our simulation and no qualitative modifications to the sheath dynamics have been noticed. However, the energetic secondary electrons change drastically the plasma net balance and also pose significant X-ray hazard. Finally, an axial magnetic field has been added to the calculations and the possibility for magnetic insulation of secondary electrons has been proven.
Resumo:
In this work we solve exactly a class of three-body propagators for the most general quadratic interactions in the coordinates, for arbitrary masses and couplings. This is done both for the constant as the time-dependent couplings and masses, by using the Feynman path integral formalism. Finally, the energy spectrum and the eigenfunctions are recovered from the propagators. © 2005 Elsevier Inc. All rights reserved.
Resumo:
We use a time-dependent dynamical mean-field-hydrodynamic model to study mixing-demixing in a degenerate fermion-fermion mixture (DFFM). It is demonstrated that with the increase of interspecies repulsion and/or trapping frequencies, a mixed state of a DFFM could turn into a fully demixed state in both three-dimensional spherically symmetric as well as quasi-one-dimensional configurations. Such a demixed state of a DFFM could be experimentally realized by varying an external magnetic field near a fermion-fermion Feshbach resonance, which will result in an increase of interspecies fermion-fermion repulsion, and/or by increasing the external trap frequencies. © 2006 The American Physical Society.
Resumo:
The aim of this paper is to present a model for orientation of pushbroom sensors that allows estimating the polynomial coefficients describing the trajectory of the platform, using linear features as ground control. Considering that pushbroom image acquisition is not instantaneous, six EOP (Exterior Orientation Parameters) for each scanned line must be estimated. The sensor position and attitude parameters are modeled with a time dependent polynomial. The relationship between object and image space is established through a mathematical model based on the equivalence between the vector normal to the projection plane in the image space and to the vector normal to the rotated projection plane in the object space. The equivalence property between planes was adapted to consider the pushbroom geometry. Some experiments with simulated data corresponding to CBERS scene (China-Brazil Earth Resource Satellite) were accomplished in order to test the developed model using straight lines. Moreover, experiments with points ground with the model based on collinearity equations adapted to the pushbroom geometry were also accomplished. The obtained results showed that the proposed model can be used to estimate the EOP of pushbroom images with suitable accuracy.
Resumo:
The in-medium influence on π0 photoproduction from spin zero nuclei is carefully studied in the GeV range using a straightforward Monte Carlo analysis. The calculation takes into account the relativistic nuclear recoil for coherent mechanisms (electromagnetic and nuclear amplitudes) plus a time dependent multi-collisional intranuclear cascade approach (MCMC) to describe the transport properties of mesons produced in the surroundings of the nucleon. A detailed analysis of the meson energy spectra for the photoproduction on 12C at 5.5 GeV indicates that both the Coulomb and nuclear coherent events are associated with a small energy transfer to the nucleus (≲ 5 MeV), while the contribution of the nuclear incoherent mechanism is vanishing small within this kinematical range. The angular distributions are dominated by the Primakoff peak at extreme forward angles, with the nuclear incoherent process being the most important contribution above θπ0 ≲ 20. Such consistent Monte Carlo approach provides a suitable method to clean up nuclear backgrounds in some recent high precision experiments, such as the PrimEx experiment at the Jefferson Laboratory Facility.
Resumo:
This paper reports the purification and biochemical/pharmacological characterization of two myotoxic phospholipases A2 (PLA2s) from Bothrops brazili venom, a native snake from Brazil. Both myotoxins (MTX-I and II) were purified by a single chromatographic step on a CM-Sepharose ion-exchange column up to a high purity level, showing Mr ∼ 14,000 for the monomer and 28,000 Da for the dimer. The N-terminal and internal peptide amino acid sequences showed similarity with other myotoxic PLA2s from snake venoms, MTX-I belonging to Asp49 PLA2 class, enzymatically active, and MTX-II to Lys49 PLA2s, catalytically inactive. Treatment of MTX-I with BPB and EDTA reduced drastically its PLA2 and anticoagulant activities, corroborating the importance of residue His48 and Ca2+ ions for the enzymatic catalysis. Both PLA2s induced myotoxic activity and dose-time dependent edema similar to other isolated snake venom toxins from Bothrops and Crotalus genus. The results also demonstrated that MTXs and cationic synthetic peptides derived from their 115-129 C-terminal region displayed cytotoxic activity on human T-cell leukemia (JURKAT) lines and microbicidal effects against Escherichia coli, Candida albicans and Leishmania sp. Thus, these PLA2 proteins and C-terminal synthetic peptides present multifunctional properties that might be of interest in the development of therapeutic strategies against parasites, bacteria and cancer. © 2008 Elsevier Inc. All rights reserved.
Resumo:
By direct numerical simulation of the time-dependent Gross-Pitaevskii equation, we study different aspects of the localization of a noninteracting ideal Bose-Einstein condensate (BEC) in a one-dimensional bichromatic quasiperiodic optical-lattice potential. Such a quasiperiodic potential, used in a recent experiment on the localization of a BEC, can be formed by the superposition of two standing-wave polarized laser beams with different wavelengths. We investigate the effect of the variation of optical amplitudes and wavelengths on the localization of a noninteracting BEC. We also simulate the nonlinear dynamics when a harmonically trapped BEC is suddenly released into a quasiperiodic potential, as done experimentally in a laser speckle potential. We finally study the destruction of the localization in an interacting BEC due to the repulsion generated by a positive scattering length between the bosonic atoms. © 2009 The American Physical Society.
Resumo:
The current study compared the toxicity of different concentrations of boric acid in adult workers of Atta sexdens rubropilosa Forel (Hymenoptera: Formicidae), with toxicological bioassays, and examining the dose-dependent and time-dependent histopathological changes, of the midgut, Malpighian tubules, and postpharyngeal glands. Our results revealed the importance of conducting toxicological bioassays combined with morphological analyses of the organs of ants chronically exposed to insecticides used in commercial ant baits. In vitro bioassays showed that boric acid significantly decreases the survivorship of workers regardless of concentration, whereas the morphological data suggested progressive dose-dependent and time-dependent changes in the organs examined, which were evident in the midgut. The midgut is the first organ to be affected, followed by the postpharyngeal gland and Malpighian tubules. This sequence is in agreement with the absorption pathway of this chemical compound in the midgut, its transference to the hemolymph, possibly reaching the postpharyngeal glands, and excretion by the Malpighian tubules. These progressive changes might be due to the cumulative and delayed effect of boric acid. Our findings provide important information for the understanding of the action of boric acid in ant baits in direct and indirect target organs. © 2010 Entomological Society of America.