995 resultados para temporal semantics
Resumo:
One of the main challenges in biological conservation has been to understand species distribution across space and time. Over the last decades, many diversity and conservation surveys have been conducted that have revealed that habitat heterogeneity acts as a major factor that determines saproxylic assemblages. However, temporal dynamics have been poorly studied, especially in Mediterranean forests. We analyzed saproxylic beetle distribution at inter and intra-annual scales in a “dehesa” ecosystem, which is a traditional Iberian agrosilvopastoral ecosystem that is characterized by the presence of old and scattered trees that dominate the landscape. Significant differences in effective numbers of families/species and species richness were found at the inter-annual scale, but this was not the case for composition. Temperature and relative humidity did not explain these changes which were mainly due to the presence of rare species. At the intra-annual scale, significant differences in the effective numbers of families/species, species richness and composition between seasons were found, and diversity partitioning revealed that season contributed significantly to gamma-diversity. Saproxylic beetle assemblages exhibited a marked seasonality in richness but not in abundance, with two peaks of activity, the highest between May and June, and the second between September and October. This pattern is mainly driven by the seasonality of the climate in the Mediterranean region, which influences ecosystem dynamics and imposes a marked seasonality on insect assemblages. An extended sampling period over different seasons allowed an overview of saproxylic dynamics, and revealed which families/species were restricted to particular seasons. Recognizing that seasons act as a driver in modelling saproxylic beetle assemblages might be a valuable tool in monitoring and for conservation strategies in Mediterranean forests.
Resumo:
The Tertiary detritic aquifer of Madrid (TDAM), with an average thickness of 1500 m and a heterogeneous, anisotropic structure, supplies water to Madrid, the most populated city of Spain (3.2 million inhabitants in the metropolitan area). Besides its complex structure, a previous work focused in the north-northwest of Madrid city showed that the aquifer behaves quasi elastically trough extraction/recovery cycles and ground uplifting during recovery periods compensates most of the ground subsidence measured during previous extraction periods (Ezquerro et al., 2014). Therefore, the relationship between ground deformation and groundwater level through time can be simulated using simple elastic models. In this work, we model the temporal evolution of the piezometric level in 19 wells of the TDAM in the period 1997–2010. Using InSAR and piezometric time series spanning the studied period, we first estimate the elastic storage coefficient (Ske) for every well. Both, the Ske of each well and the average Ske of all wells, are used to predict hydraulic heads at the different well locations during the study period and compared against the measured hydraulic heads, leading to very similar errors when using the Ske of each well and the average Ske of all wells: 14 and 16 % on average respectively. This result suggests that an average Ske can be used to estimate piezometric level variations in all the points where ground deformation has been measured by InSAR, thus allowing production of piezometric level maps for the different extraction/recovery cycles in the TDAM.
Resumo:
Se describe la composición de especies, distribución, abundancia y frecuencia de paralarvas de cefalópodos en el mar peruano. Se determinó un total de 14 familias, 8 géneros, 4 especies en un total de 1109 muestras de zooplancton colectadas con red Hensen a 50 metros de profundidad desde la superficie, proveniente de 8 cruceros de investigación ejecutados durante los años 2013 y 2014; siendo las especies más dominantes Argonauta spp. (41.4%) y Abraliopsis sp. (6.4%); y las familias Ommastrephidae (13%), Octopodidae (9.1%), Gonatidae (3.9%) y Pyroteuthidae (3.7%). Las paralarvas mostraron una distribución espacial y una relación especie-específica con las masas de agua. Las especies de Argonauta spp. estuvieron relacionadas con ASS, ACF y AES/ATS, y el aumento de sus abundancias relacionadas con el aumento de temperatura; la familia Ommastrephidae relacionadas con ASS y ACF, con una distribución oceánica; la familia Octopodidae distribuida solo en el norte-centro dentro de la plataforma continental; la familia Gonatidae asociadas únicamente a ACF; mientras que las familias Onychoteuthidae y Pyroteuthidae no mostraron patrón de distribución ni preferencia por alguna masa de agua específica.
Resumo:
Desde los años 90, la población de la merluza peruana (Merluccius gayi peruanus) pasó por uno de sus periodos más críticos, lo que conllevo al cierre de la pesquería entre septiembre del 2002 a mayo 2004. Bajo el establecimiento de un Régimen Provisional de extracción con la implementación del Sistema de Cuotas Individuales, se reinició la actividad pesquera en 2004, contando además con un sistema de monitoreo de la población entera de la flota arrastrera industrial operativa. El seguimiento de la variación espacial y temporal de la flota permitirá tener una mejor visión de cambios por parte del recurso. Los datos obtenidos a partir de la información comercial se caracterizan por un continuo abastecimiento de datos cuantitativos y en tiempo real. En este contexto, el objetivo general de la presente tesis es caracterizar los patrones anuales e interanuales del comportamiento espacial y temporal de la flota en relación a la dinámica de la merluza peruana. Para ello, se analizó 70922 registros, los cuales representan a cada lance de pesca realizado por las diferentes embarcaciones entre el 2004 y 2011. A diferencia de las Embarcaciones Arrastreras Costeras (EAC), las Embarcaciones Arrastreras de Mediana Escala (EAME) presentaron cambios en su operatividad. Se propone el uso de horas de arrastre por potencia de motor (h*HP) y kilogramos por h*HP (kg/h*HP) como unidades del esfuerzo y Captura por Unidad de Esfuerzo (CPUE) respectivamente, estas variables mostraron similares patrones para ambos tipos de embarcaciones. Si bien la CPUE mostró cierta estabilidad y posterior aumento, el número de individuos capturados de merluza incrementó notablemente; es decir, las merluzas capturadas fueron cada vez más pequeñas, estando la pesquería sustentada principalmente por individuos menores a 29 cm. Finalmente, se observó cualitativamente la existencia de una relación inversa entre el área de distribución de la merluza y su capturabilidad.
Resumo:
High-impact, localized intense rainfall episodes represent a major socio-economic problem for societies worldwide, and at the same time these events are notoriously difficult to simulate properly in climate models. Here, the authors investigate how horizontal resolution and model formulation influence this issue by applying the HARMONIE regional climate model (HCLIM) with three different setups; two using convection parameterization at 15 and 6.25 km horizontal resolution (the latter within the “grey-zone” scale), with lateral boundary conditions provided by ERA-Interim reanalysis and integrated over a pan-European domain, and one with explicit convection at 2 km resolution (HCLIM2) over the Alpine region driven by the 15 km model. Seven summer seasons were sampled and validated against two high-resolution observational data sets. All HCLIM versions underestimate the number of dry days and hours by 20-40%, and overestimate precipitation over the Alpine ridge. Also, only modest added value were found of “grey-zone” resolution. However, the single most important outcome is the substantial added value in HCLIM2 compared to the coarser model versions at sub-daily time scales. It better captures the local-to-regional spatial patterns of precipitation reflecting a more realistic representation of the local and meso-scale dynamics. Further, the duration and spatial frequency of precipitation events, as well as extremes, are closer to observations. These characteristics are key ingredients in heavy rainfall events and associated flash floods, and the outstanding results using HCLIM in convection-permitting setting are convincing and encourage further use of the model to study changes in such events in changing climates.
Resumo:
Geospatio-temporal conceptual models provide a mechanism to explicitly represent geospatial and temporal aspects of applications. Such models, which focus on both what and when/where, need to be more expressive than conventional conceptual models (e.g., the ER model), which primarily focus on what is important for a given application. In this study, we view conceptual schema comprehension of geospatio-temporal data semantics in terms of matching the external problem representation (that is, the conceptual schema) to the problem-solving task (that is, syntactic and semantic comprehension tasks), an argument based on the theory of cognitive fit. Our theory suggests that an external problem representation that matches the problem solver's internal task representation will enhance performance, for example, in comprehending such schemas. To assess performance on geospatio-temporal schema comprehension tasks, we conducted a laboratory experiment using two semantically identical conceptual schemas, one of which mapped closely to the internal task representation while the other did not. As expected, we found that the geospatio-temporal conceptual schema that corresponded to the internal representation of the task enhanced the accuracy of schema comprehension; comprehension time was equivalent for both. Cognitive fit between the internal representation of the task and conceptual schemas with geospatio-temporal annotations was, therefore, manifested in accuracy of schema comprehension and not in time for problem solution. Our findings suggest that the annotated schemas facilitate understanding of data semantics represented on the schema.
Resumo:
This study described the future temporal perspective (FTP) changes across age. Future time perspective has been evaluated according to Nurmi’s model (1989), which was composed by three components: motivation, planning, and prospective evaluation. The participants were four groups of different ages: 130 adolescents (15-18 years old), 150 undergraduates (19-28 years old), 100 adults middle age (30-59 years old), and 74 elder people (60-88 years old). It has been used the Nurmi’s Goals and Fears Questionnaire, which evaluated each three component through temporal extension, knowledge, realization, planning, control, probability of fu-ture realization, and future affect dimensions. It has been analysed dimensions for goals and fears. The results indicated a U inverted shape in tem-poral distance, progressive increase of knowledge, realization and planning, and decrease of control. Also, the results indicated gender differences according to content of goals and fears.
Resumo:
Perception of simultaneity and temporal order is studied with simultaneity judgment (SJ) and temporal-order judgment (TOJ) tasks. In the former, observers report whether presentation of two stimuli was subjectively simultaneous; in the latter, they report which stimulus was subjectively presented first. SJ and TOJ tasks typically give discrepant results, which has prompted the view that performance is mediated by different processes in each task. We looked at these discrepancies from a model that yields psychometric functions whose parameters characterize the timing, decisional, and response processes involved in SJ and TOJ tasks. We analyzed 12 data sets from published studies in which both tasks had been used in within-subjects designs, all of which had reported differences in performance across tasks. Fitting the model jointly to data from both tasks, we tested the hypothesis that common timing processes sustain simultaneity and temporal order judgments, with differences in performance arising from task-dependent decisional and response processes. The results supported this hypothesis, also showing that model psychometric functions account for aspects of SJ and TOJ data that classical analyses overlook. Implications for research on perception of simultaneity and temporal order are discussed.
Resumo:
Research on temporal-order perception uses temporal-order judgment (TOJ) tasks or synchrony judgment (SJ) tasks in their binary SJ2 or ternary SJ3 variants. In all cases, two stimuli are presented with some temporal delay, and observers judge the order of presentation. Arbitrary psychometric functions are typically fitted to obtain performance measures such as sensitivity or the point of subjective simultaneity, but the parameters of these functions are uninterpretable. We describe routines in MATLAB and R that fit model-based functions whose parameters are interpretable in terms of the processes underlying temporal-order and simultaneity judgments and responses. These functions arise from an independent-channels model assuming arrival latencies with exponential distributions and a trichotomous decision space. Different routines fit data separately for SJ2, SJ3, and TOJ tasks, jointly for any two tasks, or also jointly for the three tasks (for common cases in which two or even the three tasks were used with the same stimuli and participants). Additional routines provide bootstrap p-values and confidence intervals for estimated parameters. A further routine is included that obtains performance measures from the fitted functions. An R package for Windows and source code of the MATLAB and R routines are available as Supplementary Files.
Resumo:
Research on the perception of temporal order uses either temporal-order judgment (TOJ) tasks or synchrony judgment (SJ) tasks, in both of which two stimuli are presented with some temporal delay and observers must judge the order of presentation. Results generally differ across tasks, raising concerns about whether they measure the same processes. We present a model including sensory and decisional parameters that places these tasks in a common framework that allows studying their implications on observed performance. TOJ tasks imply specific decisional components that explain the discrepancy of results obtained with TOJ and SJ tasks. The model is also tested against published data on audiovisual temporal-order judgments, and the fit is satisfactory, although model parameters are more accurately estimated with SJ tasks. Measures of latent point of subjective simultaneity and latent sensitivity are defined that are invariant across tasks by isolating the sensory parameters governing observed performance, whereas decisional parameters vary across tasks and account for observed differences across them. Our analyses concur with other evidence advising against the use of TOJ tasks in research on perception of temporal order.
Resumo:
Las infecciones relacionadas con la asistencia sanitaria (IRAS) suponen una complicación potencialmente grave que afecta a los pacientes hospitalizados. Además, se asocian con unas tasas de resistencia más altas en comparación con las infecciones adquiridas en la comunidad, y se observa una prevalencia preocupante de enterobacterias productoras de Betalactamasas de espectro extendido (BLEE). Los pacientes ingresados en el Servicio de Urología presentan riesgos específicos para el desarrollo de IRAS, tales como la frecuente necesidad de cateterismo de la vía urinaria y la realización de un procedimiento quirúrgico durante el ingreso. Aunque el correcto conocimiento de los factores de riesgo y de las características microbiológicas permite optimizar los resultados en el manejo de las IRAS, se han realizado pocos estudios para las IRAS en los pacientes ingresados en Unidades de Urología. Nuestro objetivo principal fue conocer la incidencia y los tipos de IRAS en los pacientes ingresados en el Servicio de Urología...