868 resultados para temperature-based models
Resumo:
In this paper, a detailed study of the capacitance spectra obtained from Au/doped-polyaniline/Al structures in the frequency domain (0.05 Hz-10 MHz), and at different temperatures (150-340 K) is carried out. The capacitance spectra behavior in semiconductors can be appropriately described by using abrupt cut-off models, since they assume that the electronic gap states that can follow the ac modulation have response times varying rapidly with a certain abscissa, which is dependent on both temperature and frequency. Two models based on the abrupt cut-off concept, formerly developed to describe inorganic semiconductor devices, have been used to analyze the capacitance spectra of devices based on doped polyaniline (PANI), which is a well-known polymeric semiconductor with innumerous potential technological applications. The application of these models allowed the determination of significant parameters, such as Debye length (approximate to 20 nm), position of bulk Fermi level (approximate to 320 meV) and associated density of states (approximate to 2x10(18) eV(-1) cm(-3)), width of the space charge region (approximate to 70 nm), built-in potential (approximate to 780 meV), and the gap states` distribution.
Resumo:
Oligonucleotides have unique molecular recognition properties, being involved in biological mechanisms such as cell-surface receptor recognition or gene silencing. For their use in human therapy for drug or gene delivery, the cell membrane remains a barrier, but this can be obviated by grafting a hydrophobic tail to the oligonucleotide. Here we demonstrate that two oligonucleotides, one consisting of 12 guanosine units (G(12)), and the other one consisting of five adenosine and seven guanosine (A(5)G(7)) units, when functionalized with poly(butadiene), namely PB-G(12) and PB-A(5)G(7), can be inserted into Langmuir monolayers of dipalmitoyl phosphatidyl choline (DPPC), which served as a cell membrane model. PB-G(12) and PB-A(5)G(7) were found to affect the DPPC monolayer even at high surface pressures. The effects from PB-G(12) were consistently stronger, particularly in reducing the elasticity of the DPPC monolayers, which may have important biological implications. Multilayers of DPPC and nucleotide-based copolymers could be adsorbed onto solid supports, in the form of Y-type LB films, in which the molecular-level interaction led to lower energies in the vibrational spectra of the nucleotide-based copolymers. This successful deposition of solid films opens the way for devices to be produced which exploit the molecular recognition properties of the nucleotides. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Scale mixtures of the skew-normal (SMSN) distribution is a class of asymmetric thick-tailed distributions that includes the skew-normal (SN) distribution as a special case. The main advantage of these classes of distributions is that they are easy to simulate and have a nice hierarchical representation facilitating easy implementation of the expectation-maximization algorithm for the maximum-likelihood estimation. In this paper, we assume an SMSN distribution for the unobserved value of the covariates and a symmetric scale mixtures of the normal distribution for the error term of the model. This provides a robust alternative to parameter estimation in multivariate measurement error models. Specific distributions examined include univariate and multivariate versions of the SN, skew-t, skew-slash and skew-contaminated normal distributions. The results and methods are applied to a real data set.
Resumo:
Continuous casting is a casting process that produces steel slabs in a continuous manner with steel being poured at the top of the caster and a steel strand emerging from the mould below. Molten steel is transferred from the AOD converter to the caster using a ladle. The ladle is designed to be strong and insulated. Complete insulation is never achieved. Some of the heat is lost to the refractories by convection and conduction. Heat losses by radiation also occur. It is important to know the temperature of the melt during the process. For this reason, an online model was previously developed to simulate the steel and ladle wall temperatures during the ladle cycle. The model was developed as an ODE based model using grey box modeling technique. The model’s performance was acceptable and needed to be presented in a user friendly way. The aim of this thesis work was basically to design a GUI that presents steel and ladle wall temperatures calculated by the model and also allow the user to make adjustments to the model. This thesis work also discusses the sensitivity analysis of different parameters involved and their effects on different temperature estimations.
Predictive models for chronic renal disease using decision trees, naïve bayes and case-based methods
Resumo:
Data mining can be used in healthcare industry to “mine” clinical data to discover hidden information for intelligent and affective decision making. Discovery of hidden patterns and relationships often goes intact, yet advanced data mining techniques can be helpful as remedy to this scenario. This thesis mainly deals with Intelligent Prediction of Chronic Renal Disease (IPCRD). Data covers blood, urine test, and external symptoms applied to predict chronic renal disease. Data from the database is initially transformed to Weka (3.6) and Chi-Square method is used for features section. After normalizing data, three classifiers were applied and efficiency of output is evaluated. Mainly, three classifiers are analyzed: Decision Tree, Naïve Bayes, K-Nearest Neighbour algorithm. Results show that each technique has its unique strength in realizing the objectives of the defined mining goals. Efficiency of Decision Tree and KNN was almost same but Naïve Bayes proved a comparative edge over others. Further sensitivity and specificity tests are used as statistical measures to examine the performance of a binary classification. Sensitivity (also called recall rate in some fields) measures the proportion of actual positives which are correctly identified while Specificity measures the proportion of negatives which are correctly identified. CRISP-DM methodology is applied to build the mining models. It consists of six major phases: business understanding, data understanding, data preparation, modeling, evaluation, and deployment.
Resumo:
Generalized linear mixed models are flexible tools for modeling non-normal data and are useful for accommodating overdispersion in Poisson regression models with random effects. Their main difficulty resides in the parameter estimation because there is no analytic solution for the maximization of the marginal likelihood. Many methods have been proposed for this purpose and many of them are implemented in software packages. The purpose of this study is to compare the performance of three different statistical principles - marginal likelihood, extended likelihood, Bayesian analysis-via simulation studies. Real data on contact wrestling are used for illustration.
Resumo:
A three-dimensional time-dependent hydrodynamic and heat transport model of Lake Binaba, a shallow and small dam reservoir in Ghana, emphasizing the simulation of dynamics and thermal structure has been developed. Most numerical studies of temperature dynamics in reservoirs are based on one- or two-dimensional models. These models are not applicable for reservoirs characterized with complex flow pattern and unsteady heat exchange between the atmosphere and water surface. Continuity, momentum and temperature transport equations have been solved. Proper assignment of boundary conditions, especially surface heat fluxes, has been found crucial in simulating the lake’s hydrothermal dynamics. This model is based on the Reynolds Average Navier-Stokes equations, using a Boussinesq approach, with a standard k − ε turbulence closure to solve the flow field. The thermal model includes a heat source term, which takes into account the short wave radiation and also heat convection at the free surface, which is function of air temperatures, wind velocity and stability conditions of atmospheric boundary layer over the water surface. The governing equations of the model have been solved by OpenFOAM; an open source, freely available CFD toolbox. As its core, OpenFOAM has a set of efficient C++ modules that are used to build solvers. It uses collocated, polyhedral numerics that can be applied on unstructured meshes and can be easily extended to run in parallel. A new solver has been developed to solve the hydrothermal model of lake. The simulated temperature was compared against a 15 days field data set. Simulated and measured temperature profiles in the probe locations show reasonable agreement. The model might be able to compute total heat storage of water bodies to estimate evaporation from water surface.
Resumo:
This paper investigates whether there is evidence of structural change in the Brazilian term structure of interest rates. Multivariate cointegration techniques are used to verify this evidence. Two econometrics models are estimated. The rst one is a Vector Autoregressive Model with Error Correction Mechanism (VECM) with smooth transition in the deterministic coe¢ cients (Ripatti and Saikkonen [25]). The second one is a VECM with abrupt structural change formulated by Hansen [13]. Two datasets were analysed. The rst one contains a nominal interest rate with maturity up to three years. The second data set focuses on maturity up to one year. The rst data set focuses on a sample period from 1995 to 2010 and the second from 1998 to 2010. The frequency is monthly. The estimated models suggest the existence of structural change in the Brazilian term structure. It was possible to document the existence of multiple regimes using both techniques for both databases. The risk premium for di¤erent spreads varied considerably during the earliest period of both samples and seemed to converge to stable and lower values at the end of the sample period. Long-term risk premiums seemed to converge to inter-national standards, although the Brazilian term structure is still subject to liquidity problems for longer maturities.
Resumo:
In this article we use factor models to describe a certain class of covariance structure for financiaI time series models. More specifical1y, we concentrate on situations where the factor variances are modeled by a multivariate stochastic volatility structure. We build on previous work by allowing the factor loadings, in the factor mo deI structure, to have a time-varying structure and to capture changes in asset weights over time motivated by applications with multi pIe time series of daily exchange rates. We explore and discuss potential extensions to the models exposed here in the prediction area. This discussion leads to open issues on real time implementation and natural model comparisons.
Resumo:
The past decade has wítenessed a series of (well accepted and defined) financial crises periods in the world economy. Most of these events aI,"e country specific and eventually spreaded out across neighbor countries, with the concept of vicinity extrapolating the geographic maps and entering the contagion maps. Unfortunately, what contagion represents and how to measure it are still unanswered questions. In this article we measure the transmission of shocks by cross-market correlation\ coefficients following Forbes and Rigobon's (2000) notion of shift-contagion,. Our main contribution relies upon the use of traditional factor model techniques combined with stochastic volatility mo deIs to study the dependence among Latin American stock price indexes and the North American indexo More specifically, we concentrate on situations where the factor variances are modeled by a multivariate stochastic volatility structure. From a theoretical perspective, we improve currently available methodology by allowing the factor loadings, in the factor model structure, to have a time-varying structure and to capture changes in the series' weights over time. By doing this, we believe that changes and interventions experienced by those five countries are well accommodated by our models which learns and adapts reasonably fast to those economic and idiosyncratic shocks. We empirically show that the time varying covariance structure can be modeled by one or two common factors and that some sort of contagion is present in most of the series' covariances during periods of economical instability, or crisis. Open issues on real time implementation and natural model comparisons are thoroughly discussed.
Resumo:
Nowadays, more than half of the computer development projects fail to meet the final users' expectations. One of the main causes is insufficient knowledge about the organization of the enterprise to be supported by the respective information system. The DEMO methodology (Design and Engineering Methodology for Organizations) has been proved as a well-defined method to specify, through models and diagrams, the essence of any organization at a high level of abstraction. However, this methodology is platform implementation independent, lacking the possibility of saving and propagating possible changes from the organization models to the implemented software, in a runtime environment. The Universal Enterprise Adaptive Object Model (UEAOM) is a conceptual schema being used as a basis for a wiki system, to allow the modeling of any organization, independent of its implementation, as well as the previously mentioned change propagation in a runtime environment. Based on DEMO and UEAOM, this project aims to develop efficient and standardized methods, to enable an automatic conversion of DEMO Ontological Models, based on UEAOM specification into BPMN (Business Process Model and Notation) models of processes, using clear semantics, without ambiguities, in order to facilitate the creation of processes, almost ready for being executed on workflow systems that support BPMN.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)