880 resultados para system quality
Resumo:
Here we present the development of a visual evaluation system for routine assessment of in vitro-engineered cartilaginous tissue. Neocartilage was produced by culturing human articular chondrocytes in pellet culture systems or in a scaffold-free bioreactor system. All engineered tissues were embedded in paraffin and were sectioned and stained with Safranin O-fast green. The evaluation of each sample was broken into 3 categories (uniformity and intensity of Safranin O stain, distance between cells/amount of matrix produced, and cell morphology), and each category had 4 components with a score ranging from 0 to 3. Three observers evaluated each sample, and the new system was independently tested against an objective computer-based histomorphometry system. Pellets were also assessed biochemically for glycosaminoglycan (GAG) content. Pellet histology scores correlated significantly with GAG contents and were in agreement with the computer-based histomorphometry system. This system allows a valid and rapid assessment of in vitro-generated cartilaginous tissue that has a relevant association with objective parameters indicative of cartilage quality.
Resumo:
BACKGROUND: The steadily increasing demands for single-donor apheresis platelet (PLT) concentrates (APCs) are a challenge to the PLT supply system. Therefore, efforts to improve plateletpheresis yield, allowing apheresis products to be split into 2 or more units, are valuable strategies. No data to demonstrate in vivo transfusion efficacy of these high-yield split-APCs are currently available, however. STUDY DESIGN AND METHODS: The transfusion efficacy of APCs produced by two apheresis methods involving different harvest and storing procedures and varying PLT yields was investigated. Efficacy measures were the 1-hour percent PLT recovery (PPR(1h)) and the 1-hour corrected count increment (CCI(1h)). In total, 400 APCs, produced with either an Amicus device (Baxter) and stored in PLT additive solution (T-Sol; Amicus method [AM], n = 107) or a Trima device (Gambro) and stored in plasma (Trima method [TM], n = 293), were transfused to 55 children (31 girls; median age, 9.5 years; range, 0.2-18.5 years) with thrombocytopenia due to chemotherapy or aplastic anemia (median, 4 APCs per child; range, 1-68). RESULTS: Transfusion efficacy was significantly lower for AM-APCs than for TM-APCs (median PPR(1h), 17 and 33%; median CCI(1h), 7.9 and 15.6, respectively; p < 0.001). Reduced transfusion efficacy correlated in a yield-dependent manner with high apheresis PLT yields (>/=6 x 10(11)) for AM-APCs (p < 0.001). CONCLUSION: Although in vitro validation of AM- and TM-APCs has been performed, only by evaluating transfusion efficacy in vivo did the AM turn out to be not suitable for high-yield thrombocytapheresis. This study recommends the implementation of in vivo transfusion efficacy studies for high-yield APC apheresis donations.
Resumo:
CONCLUSION: Our self-developed planning and navigation system has proven its capacity for accurate surgery on the anterior and lateral skull base. With the incorporation of augmented reality, image-guided surgery will evolve into 'information-guided surgery'. OBJECTIVE: Microscopic or endoscopic skull base surgery is technically demanding and its outcome has a great impact on a patient's quality of life. The goal of the project was aimed at developing and evaluating enabling navigation surgery tools for simulation, planning, training, education, and performance. This clinically applied technological research was complemented by a series of patients (n=406) who were treated by anterior and lateral skull base procedures between 1997 and 2006. MATERIALS AND METHODS: Optical tracking technology was used for positional sensing of instruments. A newly designed dynamic reference base with specific registration techniques using fine needle pointer or ultrasound enables the surgeon to work with a target error of < 1 mm. An automatic registration assessment method, which provides the user with a color-coded fused representation of CT and MR images, indicates to the surgeon the location and extent of registration (in)accuracy. Integration of a small tracker camera mounted directly on the microscope permits an advantageous ergonomic way of working in the operating room. Additionally, guidance information (augmented reality) from multimodal datasets (CT, MRI, angiography) can be overlaid directly onto the surgical microscope view. The virtual simulator as a training tool in endonasal and otological skull base surgery provides an understanding of the anatomy as well as preoperative practice using real patient data. RESULTS: Using our navigation system, no major complications occurred in spite of the fact that the series included difficult skull base procedures. An improved quality in the surgical outcome was identified compared with our control group without navigation and compared with the literature. The surgical time consumption was reduced and more minimally invasive approaches were possible. According to the participants' questionnaires, the educational effect of the virtual simulator in our residency program received a high ranking.
Resumo:
1. Parasites might preferentially feed on hosts in good nutritional condition as such hosts provide better resources for the parasites' own growth, survival and reproduction. However, hosts in prime condition are also better able to develop costly immunological or physiological defence mechanisms, which in turn reduce the parasites' reproductive success. The interplay between host condition, host defence and parasite fitness will thus play an important part in the dynamics of host-parasite systems.;2. In a 2 x 2 design, we manipulated both the access to food in great tit Parus major broods and the exposure of the nestlings to hen fleas Ceratophyllus gallinae, a common ectoparasite of hole-breeding birds. We subsequently investigated the role of manipulated host condition, host immunocompetence, and experimentally induced host defence in nestlings on the reproductive success of individual hen flea females.;3. The food supplementation of the nestlings significantly influenced the parasites' reproductive success. Female fleas laid significantly more eggs when feeding on food-supplemented hosts.;4. Previous parasite exposure of the birds affected the reproductive success of fleas. However, the impact of this induced host response on flea reproduction depended on the birds' natural level of immunocompetence, assessed by the phytohaemagglutinin (PHA) skin test. Flea fecundity significantly decreased with increasing PHA response of the nestlings in previously parasite-exposed broods. No relationship between flea fitness and host immunocompetence was, however, found in previously unexposed broods. The PHA response thus correlates with the nestlings' ability to mount immunological or physiological defence mechanisms against hen fleas. No significant interaction effect between early flea exposure and food supplementation on the parasites' reproductive success was found.;5. Our study shows that the reproductive success of hen fleas is linked to the hosts' food supply early in life and their ability to mount induced immunological or physiological defence mechanisms. These interactions between host quality and parasite fitness are likely to influence host preference, host choice and parasite virulence and thus the evolutionary dynamics in host-parasite systems.
Resumo:
The research presented in this thesis was conducted to further the development of the stress wave method of nondestructively assessing the quality of wood in standing trees. The specific objective of this research was to examine, in the field, use of two stress wave nondestructive assessment techniques. The first technique examined utilizes a laboratory-built measurement system consisting of commercially available accelerometers and a digital storage oscilloscope. The second technique uses a commercially available tool that incorporates several technologies to determine speed of stress wave propagation in standing trees. Field measurements using both techniques were conducted on sixty red pine trees in south-central Wisconsin and 115 ponderosa pine trees in western Idaho. After in-situ measurements were taken, thirty tested red pine trees were felled and a 15-foot-long butt log was obtained from each tree, while all tested ponderosa pine trees were felled and an 8 1/2 -foot-long butt log was obtained, respectively. The butt logs were sent to the USDA Forest Products Laboratory and nondestructively tested using a resonance stress wave technique. Strong correlative relationships were observed between stress wave values obtained from both field measurement techniques. Excellent relationships were also observed between standing tree and log speed-of-sound values.
Resumo:
With energy demands and costs growing every day, the need for improving energy efficiency in electrical devices has become very important. Research into various methods of improving efficiency for all electrical components will be a key to meet future energy needs. This report documents the design, construction, and testing of a research quality electric machine dynamometer and test bed. This test cell system can be used for research in several areas including: electric drives systems, electric vehicle propulsion systems, power electronic converters, load/source element in an AC Microgrid, as well as many others. The test cell design criteria, and decisions, will be discussed in reference to user functionality and flexibility. The individual power components will be discussed in detail to how they relate to the project, highlighting any feature used in operation of the test cell. A project timeline will be discussed, clearly stating the work done by the different individuals involved in the project. In addition, the system will be parameterized and benchmark data will be used to provide the functional operation of the system. With energy demands and costs growing every day, the need for improving energy efficiency in electrical devices has become very important. Research into various methods of improving efficiency for all electrical components will be a key to meet future energy needs. This report documents the design, construction, and testing of a research quality electric machine dynamometer and test bed. This test cell system can be used for research in several areas including: electric drives systems, electric vehicle propulsion systems, power electronic converters, load/source element in an AC Microgrid, as well as many others. The test cell design criteria, and decisions, will be discussed in reference to user functionality and flexibility. The individual power components will be discussed in detail to how they relate to the project, highlighting any feature used in operation of the test cell. A project timeline will be discussed, clearly stating the work done by the different individuals involved in the project. In addition, the system will be parameterized and benchmark data will be used to provide the functional operation of the system.
Resumo:
The primary challenge in groundwater and contaminant transport modeling is obtaining the data needed for constructing, calibrating and testing the models. Large amounts of data are necessary for describing the hydrostratigraphy in areas with complex geology. Increasingly states are making spatial data available that can be used for input to groundwater flow models. The appropriateness of this data for large-scale flow systems has not been tested. This study focuses on modeling a plume of 1,4-dioxane in a heterogeneous aquifer system in Scio Township, Washtenaw County, Michigan. The analysis consisted of: (1) characterization of hydrogeology of the area and construction of a conceptual model based on publicly available spatial data, (2) development and calibration of a regional flow model for the site, (3) conversion of the regional model to a more highly resolved local model, (4) simulation of the dioxane plume, and (5) evaluation of the model's ability to simulate field data and estimation of the possible dioxane sources and subsequent migration until maximum concentrations are at or below the Michigan Department of Environmental Quality's residential cleanup standard for groundwater (85 ppb). MODFLOW-2000 and MT3D programs were utilized to simulate the groundwater flow and the development and movement of the 1, 4-dioxane plume, respectively. MODFLOW simulates transient groundwater flow in a quasi-3-dimensional sense, subject to a variety of boundary conditions that can simulate recharge, pumping, and surface-/groundwater interactions. MT3D simulates solute advection with groundwater flow (using the flow solution from MODFLOW), dispersion, source/sink mixing, and chemical reaction of contaminants. This modeling approach was successful at simulating the groundwater flows by calibrating recharge and hydraulic conductivities. The plume transport was adequately simulated using literature dispersivity and sorption coefficients, although the plume geometries were not well constrained.
Resumo:
Building energy meter network, based on per-appliance monitoring system, willbe an important part of the Advanced Metering Infrastructure. Two key issues exist for designing such networks. One is the network structure to be used. The other is the implementation of the network structure on a large amount of small low power devices, and the maintenance of high quality communication when the devices have electric connection with high voltage AC line. The recent advancement of low-power wireless communication makes itself the right candidate for house and building energy network. Among all kinds of wireless solutions, the low speed but highly reliable 802.15.4 radio has been chosen in this design. While many network-layer solutions have been provided on top of 802.15.4, an IPv6 based method is used in this design. 6LOWPAN is the particular protocol which adapts IP on low power personal network radio. In order to extend the network into building area without, a specific network layer routing mechanism-RPL, is included in this design. The fundamental unit of the building energy monitoring system is a smart wall plug. It is consisted of an electricity energy meter, a RF communication module and a low power CPU. The real challenge for designing such a device is its network firmware. In this design, IPv6 is implemented through Contiki operation system. Customize hardware driver and meter application program have been developed on top of the Contiki OS. Some experiments have been done, in order to prove the network ability of this system.
Resumo:
Users of cochlear implants (auditory aids, which stimulate the auditory nerve electrically at the inner ear) often suffer from poor speech understanding in noise. We evaluate a small (intermicrophone distance 7 mm) and computationally inexpensive adaptive noise reduction system suitable for behind-the-ear cochlear implant speech processors. The system is evaluated in simulated and real, anechoic and reverberant environments. Results from simulations show improvements of 3.4 to 9.3 dB in signal to noise ratio for rooms with realistic reverberation and more than 18 dB under anechoic conditions. Speech understanding in noise is measured in 6 adult cochlear implant users in a reverberant room, showing average improvements of 7.9–9.6 dB, when compared to a single omnidirectional microphone or 1.3–5.6 dB, when compared to a simple directional two-microphone device. Subjective evaluation in a cafeteria at lunchtime shows a preference of the cochlear implant users for the evaluated device in terms of speech understanding and sound quality.
Resumo:
Rising fuel prices and environmental concerns are threatening the stability of current electrical grid systems. These factors are pushing the automobile industry towards more effcient, hybrid vehicles. Current trends show petroleum is being edged out in favor of electricity as the main vehicular motive force. The proposed methods create an optimized charging control schedule for all participating Plug-in Hybrid Electric Vehicles in a distribution grid. The optimization will minimize daily operating costs, reduce system losses, and improve power quality. This requires participation from Vehicle-to-Grid capable vehicles, load forecasting, and Locational Marginal Pricing market predictions. Vehicles equipped with bidirectional chargers further improve the optimization results by lowering peak demand and improving power quality.
Resumo:
Non-uniformity of steps within a flight is a major risk factor for falls. Guidelines and requirements for uniformity of step risers and tread depths assume the measurement system provides precise dimensional values. The state-of-the-art measurement system is a relatively new method, known as the nosing-to-nosing method. It involves measuring the distance between the noses of adjacent steps and the angle formed with the horizontal. From these measurements, the effective riser height and tread depth are calculated. This study was undertaken for the purpose of evaluating the measurement system to determine how much of total measurement variability comes from the step variations versus that due to repeatability and reproducibility (R&R) associated with the measurers. Using an experimental design quality control professionals call a measurement system experiment, two measurers measured all steps in six randomly selected flights, and repeated the process on a subsequent day. After marking each step in a flight in three lateral places (left, center, and right), the measurers took their measurement. This process yielded 774 values of riser height and 672 values of tread depth. Results of applying the Gage R&R ANOVA procedure in Minitab software indicated that the R&R contribution to riser height variability was 1.42%; and to tread depth was 0.50%. All remaining variability was attributed to actual step-to-step differences. These results may be compared with guidelines used in the automobile industry for measurement systems that consider R&R less than 1% as an acceptable measurement system; and R&R between 1% and 9% as acceptable depending on the application, the cost of the measuring device, cost of repair, or other factors.
Variability of anti-PF4/heparin antibody results obtained by the rapid testing system ID-H/PF4-PaGIA
Resumo:
BACKGROUND: Recent studies have shown that a low clinical pretest probability may be adequate for excluding heparin-induced thrombocytopenia. However, for patients with intermediate or high pretest probability, laboratory testing is essential for confirming or refuting the diagnosis. Rapid assessment of anti-PF4/heparin-antibodies may assist clinical decision-making. OBJECTIVES: To evaluate the performance of rapid ID-H/PF4-PaGIA. In particular, we verified reproducibility of results between plasma and serum specimens, between fresh and frozen samples, and between different ID-H/PF4-polymer lots (polystyrene beads coated with heparin/PF4-complexes). PATIENTS/METHODS: The samples studied were 1376 plasma and 914 corresponding serum samples from patients investigated for suspected heparin-induced thrombocytopenia between January 2000 and October 2008. Anti-PF4/heparin-antibodies were assessed by ID-H/PF4-PaGIA, commercially available ELISAs and heparin-induced platelet aggregation test. RESULTS: Among 914 paired plasma/serum samples we noted discordant results (negative vs. low-titre positive) in nine instances (1%; 95%CI, 0.4-1.6%). Overall, agreement between titres assessed in plasma vs. serum was highly significant (Spearman correlation coefficient, 0.975; P < 0.0001). Forty-seven samples tested both fresh and after freezing/thawing showed a good agreement, with one discordant positive/negative result (Spearman correlation coefficient, 0.970; P < 0.0001). Among 1376 plasma samples we noted a strikingly variable incidence of false negative results (none - 82%; 95%CI, 66-98%), depending on the employed ID-H/PF4-polymer lot. Faulty lots can be recognized by titrating commercial positive controls and stored samples of HIT-patients. CONCLUSION: Laboratories performing the assay should implement stringent internal quality controls in order to recognize potentially faulty ID-H/PF4-polymer lots, thus avoiding false negative results.
Resumo:
Advances in spinal cord injury (SCI) research are dependent on quality animal models, which in turn rely on sensitive outcome measures able to detect functional differences in animals following injury. To date, most measurements of dysfunction following SCI rely either on the subjective rating of observers or the slow throughput of manual gait assessment. The present study compares the gait of normal and contusion-injured mice using the TreadScan system. TreadScan utilizes a transparent treadmill belt and a high-speed camera to capture the footprints of animals and automatically analyze gait characteristics. Adult female C57Bl/6 mice were introduced to the treadmill prior to receiving either a standardized mild, moderate, or sham contusion spinal cord injury. TreadScan gait analyses were performed weekly for 10 weeks and compared with scores on the Basso Mouse Scale (BMS). Results indicate that this software successfully differentiates sham animals from injured animals on a number of gait characteristics, including hindlimb swing time, stride length, toe spread, and track width. Differences were found between mild and moderate contusion injuries, indicating a high degree of sensitivity within the system. Rear track width, a measure of the animal's hindlimb base of support, correlated strongly both with spared white matter percentage and with terminal BMS. TreadScan allows for an objective and rapid behavioral assessment of locomotor function following mild-moderate contusive SCI, where the majority of mice still exhibit hindlimb weight support and plantar paw placement during stepping.
Resumo:
Enterprise Applications are complex software systems that manipulate much persistent data and interact with the user through a vast and complex user interface. In particular applications written for the Java 2 Platform, Enterprise Edition (J2EE) are composed using various technologies such as Enterprise Java Beans (EJB) or Java Server Pages (JSP) that in turn rely on languages other than Java, such as XML or SQL. In this heterogeneous context applying existing reverse engineering and quality assurance techniques developed for object-oriented systems is not enough. Because those techniques have been created to measure quality or provide information about one aspect of J2EE applications, they cannot properly measure the quality of the entire system. We intend to devise techniques and metrics to measure quality in J2EE applications considering all their aspects and to aid their evolution. Using software visualization we also intend to inspect to structure of J2EE applications and all other aspects that can be investigate through this technique. In order to do that we also need to create a unified meta-model including all elements composing a J2EE application.