1000 resultados para structural ceramic
DPS-Like Peroxide Resistance Protein: Structural and Functional Studies on a Versatile Nanocontainer
Resumo:
Oxidative stress is a constant threat to almost all organisms. It damages a number of biomolecules and leads to the disruption of many crucial cellular functions. It is caused by reactive oxygen species (ROS), such as hydrogen peroxide (H
Resumo:
ABSTRACTWhile a number of papers have shown that subway systems have an impact on the air quality through the release of particulate matters, no information about the impact of such particles on tree attributes is available. Tree leaves from three different species from the exit side of a subway station in Rio de Janeiro, Brazil, were more asymmetrical than leaves from the entrance side. This leaves also presenting changes in leaves cuticle and chlorophyll content.
Resumo:
ABSTRACT In Brazil, specifically in São Paulo State, there are guidelines based on the high diversity of tropical forests that instructs the restoration projects in the state (current SMA 32/2014). The main goal of this study was verify the importance and effectiveness of the high diversity of arboreal species originated from a reforestation, and its influence in a woody regenerating composition. We developed a phytosociologic study in a woody regenerating stratum of a nine year old reforestation at a Private Reserve of Natural Heritage (RPPN), in Mogi-Guaçu, São Paulo State. All specimens with height > 30 cm and Diameter at Breast Height (DBH) < 5 cm were evaluated. The woody regenerating diversity was smaller than the overstory diversity and the species composition was similar to the overstory. The Simpson index (1-D) was 0.85, Shannon index (H') was 2.46 and the Pielou index (J') was 0.60. The zoochoric dispersion syndrome was major among the species. Our results suggest that the use of high diversity of native seedlings in a reforestation leads to high diversity of species in woody regeneration stratum, after one decade of planting.
Resumo:
Currently, the standards that deal with the determination of the properties of rigidity and strength for structural round timber elements do not take in consideration in their calculations and mathematical models the influence of the existing irregularities in the geometry of these elements. This study has as objective to determine the effective value of the modulus of longitudinal elasticity for structural round timber pieces of the Eucalyptus citriodora genus by a technique of optimization allied to the Inverse Analysis Method, to the Finite Element Method and the Least Square Method.
Resumo:
Round timber has great use in civil construction, performing the function of beams, columns, foundations, poles for power distribution among others, with the advantage of not being processed, such as lumber. The structural design of round timber requires determining the elastic properties, mainly the modulus of elasticity. The Brazilian standards responsible for the stiffness and strength determination of round timber are in effect for over twenty years with no technical review. Round timber, for generally present an axis with non-zero curvature according to the position of the element in the bending test, may exhibit different values of modulus of elasticity. This study aims to analyze the position effect of Eucalyptus grandis round timber on the flexural modulus of elasticity. The three-point bending test was evaluated in two different positions based on the longitudinal rotation of the round timber element. The results revealed that at least two different positions of the round timber element are desired to obtain significant modulus of elasticity.
Resumo:
This study aims to present an alternative calculation methodology based on the Least Squares Method for determining the modulus of elasticity in bending wooden beams of structural dimensions. The equations developed require knowledge of three or five points measured in displacements along the piece, allowing greater reliability on the response variable, using the statistical bending test at three points and non-destructively, resulting from imposition of measures from small displacements L/300 and L/200, the largest being stipulated by the Brazilian norm NBR 7190:1997. The woods tested were Angico, Cumaru, Garapa and Jatoba. Besides obtaining the modulus of elasticity through the alternative methodology proposed, these were also obtained employing the Brazilian norm NBR 7190:1997, adapted to the condition of non-destructive testing (small displacements) and for pieces of structural dimensions. The results of the modulus of elasticity of the four species of wood according to both calculation approaches used proved to be equivalent, implying the good approximation provided by the methodology of calculation adapted from the Brazilian norm.
Resumo:
Atomic structure of ZrO2 and B2O3 was investigated in this work. New data under extreme conditions (T = 3100 K) was obtained for the liquid ZrO2 structure. A fractional number of boron was investigated for glassy structure of B2O3. It was shown that it is possible to obtain an agreement for the fractional number between NMR and DFT techniques using a suitable initial configuration.
Resumo:
Modern machine structures are often fabricated by welding. From a fatigue point of view, the structural details and especially, the welded details are the most prone to fatigue damage and failure. Design against fatigue requires information on the fatigue resistance of a structure’s critical details and the stress loads that act on each detail. Even though, dynamic simulation of flexible bodies is already current method for analyzing structures, obtaining the stress history of a structural detail during dynamic simulation is a challenging task; especially when the detail has a complex geometry. In particular, analyzing the stress history of every structural detail within a single finite element model can be overwhelming since the amount of nodal degrees of freedom needed in the model may require an impractical amount of computational effort. The purpose of computer simulation is to reduce amount of prototypes and speed up the product development process. Also, to take operator influence into account, real time models, i.e. simplified and computationally efficient models are required. This in turn, requires stress computation to be efficient if it will be performed during dynamic simulation. The research looks back at the theoretical background of multibody dynamic simulation and finite element method to find suitable parts to form a new approach for efficient stress calculation. This study proposes that, the problem of stress calculation during dynamic simulation can be greatly simplified by using a combination of floating frame of reference formulation with modal superposition and a sub-modeling approach. In practice, the proposed approach can be used to efficiently generate the relevant fatigue assessment stress history for a structural detail during or after dynamic simulation. In this work numerical examples are presented to demonstrate the proposed approach in practice. The results show that approach is applicable and can be used as proposed.
Resumo:
The dewatering of iron ore concentrates requires large capacity in addition to producing a cake with low moisture content. Such large processes are commonly energy intensive and means to lower the specific energy consumption are needed. Ceramic capillary action disc filters incorporate a novel filter medium enabling the harnessing of capillary action, which results in decreased energy consumption in comparison to traditional filtration technologies. As another benefit, the filter medium is mechanically and chemically more durable than, for example, filter cloths and can, thus, withstand harsh operating conditions and possible regeneration better than other types of filter media. In iron ore dewatering, the regeneration of the filter medium is done through a combination of several techniques: (1) backwashing, (2) ultrasonic cleaning, and (3) acid regeneration. Although it is commonly acknowledged that the filter medium is affected by slurry particles and extraneous compounds, published research, especially in the field of dewatering of mineral concentrates, is scarce. Whereas the regenerative effect of backwashing and ultrasound are more or less mechanical, regeneration with acids is based on chemistry. The chemistry behind the acid regeneration is, naturally, dissolution. The dissolution of iron oxide particles has been extensively studied over several decades but those studies may not necessarily be directly applicable in the regeneration of the filter medium which has undergone interactions with the slurry components. The aim of this thesis was to investigate if free particle dissolution indeed correlates with the regeneration of the filter medium. For this purpose, both free particle dissolution and dissolution of surface adhered particles were studied. The focus was on acidic dissolution of iron oxide particles and on the study of the ceramic filter medium used in the dewatering of iron ore concentrates. The free particle dissolution experiments show that the solubility of synthetic fine grained iron oxide particles in oxalic acid could be explained through linear models accounting for the effects of temperature and acid concentration, whereas the dissolution of a natural magnetite is not so easily explained by such models. In addition, the kinetic experiments performed both support and contradict the work of previous authors: the suitable kinetic model here supports previous research suggesting solid state reduction to be the reaction mechanism of hematite dissolution but the formation of a stable iron oxalate is not supported by the results of this research. Several other dissolution mechanisms have also been suggested for iron oxide dissolution in oxalic acid, indicating that the details of oxalate promoted reductive dissolution are not yet agreed and, in this respect, this research offers added value to the community. The results of the regeneration experiments with the ceramic filter media show that oxalic acid is highly effective in removing iron oxide particles from the surface of the filter medium. The dissolution of those particles did not, however, exhibit the expected behaviour, i.e. complete dissolution. The results of this thesis show that although the regeneration of the ceramic filter medium with acids incorporates the dissolution of slurry particles from the surface of the filter medium, the regeneration cannot be assessed purely based upon free particle dissolution. A steady state, dependent on temperature and on the acid concentration, was observed in the dissolution of particles from the surface even though the limit of solubility of free iron oxide particles had not been reached. Both the regeneration capacity and efficiency, with regards to the removal of iron oxide particles, was found to be temperature dependent, but was not affected by the acid concentration. This observation further suggests that the removal of the surface adhered particles does not follow the dissolution of free particles, which do exhibit a dependency on the acid concentration. In addition, changes in the permeability and in the pore structure of the filter medium were still observed after the bulk concentration of dissolved iron had reached a steady state. Consequently, the regeneration of the filter medium continued after the dissolution of particles from the surface had ceased. This observation suggests that internal changes take place at the final stages of regeneration. The regeneration process could, in theory, be divided into two, possibly overlapping, stages: (1) dissolution of surface-adhered particles, and (2) dissolution of extraneous compounds from within the pore structure. In addition to the fundamental knowledge generated during this thesis, tools to assess the effects of parameters on the regeneration of the ceramic filter medium are needed. It has become clear that the same tools used to estimate the dissolution of free particles cannot be used to estimate the regeneration of a filter medium unless only a robust characterisation of the order of regeneration efficiency is needed.
Resumo:
In this work mathematical programming models for structural and operational optimisation of energy systems are developed and applied to a selection of energy technology problems. The studied cases are taken from industrial processes and from large regional energy distribution systems. The models are based on Mixed Integer Linear Programming (MILP), Mixed Integer Non-Linear Programming (MINLP) and on a hybrid approach of a combination of Non-Linear Programming (NLP) and Genetic Algorithms (GA). The optimisation of the structure and operation of energy systems in urban regions is treated in the work. Firstly, distributed energy systems (DES) with different energy conversion units and annual variations of consumer heating and electricity demands are considered. Secondly, district cooling systems (DCS) with cooling demands for a large number of consumers are studied, with respect to a long term planning perspective regarding to given predictions of the consumer cooling demand development in a region. The work comprises also the development of applications for heat recovery systems (HRS), where paper machine dryer section HRS is taken as an illustrative example. The heat sources in these systems are moist air streams. Models are developed for different types of equipment price functions. The approach is based on partitioning of the overall temperature range of the system into a number of temperature intervals in order to take into account the strong nonlinearities due to condensation in the heat recovery exchangers. The influence of parameter variations on the solutions of heat recovery systems is analysed firstly by varying cost factors and secondly by varying process parameters. Point-optimal solutions by a fixed parameter approach are compared to robust solutions with given parameter variation ranges. In the work enhanced utilisation of excess heat in heat recovery systems with impingement drying, electricity generation with low grade excess heat and the use of absorption heat transformers to elevate a stream temperature above the excess heat temperature are also studied.
Resumo:
Porcine circovirus 2 (PCV2) is generally associated with the porcine circovirosis syndrome, which is considered an important disease of swine and has potentially serious economic impact on the swine industry worldwide. This article describes the construction of a recombinant plasmid expressing the PCV2 structural protein and the evaluation of cellular and humoral immune responses produced by this recombinant vaccine in BALB/c mice. The vaccine candidate was obtained and analyzed in vivo, in an effort to determine the ability to induce a specific immune response in mice. DNA was extracted from a Brazilian PCV2 isolate and the gene coding for Cap protein was amplified by PCR and inserted into an expression plasmid. Groups of BALB/c mice were inoculated intra-muscularly and intradermally in a 15-day interval, with 100 µg and 50 µg of the vaccine construct, respectively. Another group was inoculated intramuscularly with 100 µg of empty plasmid, corresponding to the control group. Seroconversion and cellular response in BALB/c mice were compared and used for vaccine evaluation. Seroconversion was analyzed by ELISA. After a series of 3 immunizations the spleen cells of the immunized animals were used to perform lymphocyte proliferation assays. Seroconversion to PCV2 was detected by ELISA in the animals inoculated with the vaccine construct when compared with control groups. Lymphocyte proliferation assays showed a stronger cell proliferation in the inoculated animals compared with the control group. Thus, the vaccine candidate construct demonstrated to be able to induce both humoral and cellular responses in inoculated mice.
Resumo:
The rising demand for oil and gas has made it very necessary for the oil and gas industries to explore the offshore. There is a huge resources which is available in the offshore. The search for oil and gas is faced with greater challenges because of the nature of the marine environment as it poses difficult and harsh conditions for the construction of offshore structures. The major problem of the construction of offshore structure is the ability to produce a sound weld that gives the whole structure the structural integrity needed to withstand the harsh environmental conditions. This research work presents the performance of typical offshore steels with improved weldability. The ability of reducing the carbon content of thermo-mechanically rolled steels down to 0.08% makes it possible to achieve good weldability, toughness and strength for high strength steels used in offshore applications. Importantly, the ideal welding procedure should be strictly followed as recommended. The fabrication process is as important as the welding procedure in achieving a sound weld which is free of weld defects such as hydrogen induced cracking, lamellar tearing and solidification cracking. This research work also considers the corrosion as it affects offshore structure and necessary measures to mitigate the problem caused by corrosion.
Resumo:
The aim of this dissertation is to bridge and synthesize the different streams of literature addressing ecosystem architecture through a multiple‐lens perspective. In addition, the structural properties of and processes to design and manage the architecture will be examined. With this approach, the oft‐neglected actor‐structure duality is addressed and both the position and structure, and action and process are under scrutiny. Further, the developed framework and empirical evidence offer valuable insights on how firms collectively create value and individually appropriate value. The dissertation is divided into two parts. The first part comprises a literature review, as well as the conclusions of the whole study, and the second part includes six research publications. The dissertation is based on three different reasoning logics: abduction, induction and deduction; related qualitative and quantitative methodologies are utilized in the empirical examination of the phenomenon in the information and communication technology industry. The results suggest firstly that there are endogenous and exogenous structural properties of the ecosystem architecture. Out of these, the former ones can be more easily influenced by a particular actor whereas the latter ones are taken more or less for granted. Secondly, the exogenous ecosystem design properties influence the value creation potential of the ecosystem whereas the endogenous ecosystem design properties influence the value appropriation potential of a particular actor in the ecosystem. Thirdly, the study suggests that there is a relationship between endogenous and exogenous structural properties in that the endogenous properties can be leveraged to create and reconfigure the exogenous properties whereas the exogenous properties prose opportunities and restrictions on the use of endogenous properties. In addition, the study suggests that there are different emergent and engineered processes to design and manage ecosystem architecture and to influence both the endogenous and exogenous structural properties of ecosystem architecture. This study makes three main contributions. First, on the conceptual level, it brings coherence and direction to the fast growing body of literature on novel inter‐organizational arrangements, such as ecosystems. It does this by bridging and synthetizing three different streams of literature, namely the boundary, design and orchestration conception. Secondly, it sets out a framework that enhances our understanding of the structural properties of ecosystem architecture; of the processes to design and manage ecosystem architecture; and of their influence on the value creation potential of the ecosystem and the value capture potential of a particular firm. Thirdly, it offers empirical evidence of the structural properties and processes.
Resumo:
A frequency-domain method for nonlinear analysis of structural systems with viscous, hysteretic, nonproportional and frequency-dependent damping is presented. The nonlinear effects and nonproportional damping are considered through pseudo-force terms. The modal coordinates uncoupled equations are iteratively solved. The treatment of initial conditions in the frequency domain which is necessary for the treatment of the uncoupled equations is initially adressed.