884 resultados para stochastic dynamic systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the resonant frequency modulation of inertial microelectromechanical systems (MEMS) structures due to squeeze film stiffness over a range of working pressures. Squeeze film effects have been studied extensively, but mostly in the context of damping and Q-factor determination of dynamic MEMS structures, typically suspended over a fixed substrate with a very thin air gap. Here, we show with experimental measurements and analytical calculations how the pressure-dependent air springs (squeeze film stiffness) change the resonant frequency of an inertial MEMS structure by as much as five times. For capturing the isolated effect of the squeeze film stiffness, we first determine the static stiffness of our structure with atomic force microscope probing and then study the effect of the air spring by measuring the dynamic response of the structure, thus finding the resonant frequencies while varying the air pressure from 1 to 905 mbar. We also verify our results by analytical and Finite Element Method calculations. Our findings show that the pressure-dependent squeeze film stiffness can affect a rather huge range of frequency modulation (>400%) and, therefore, can be used as a design parameter for exploiting this effect in MEMS devices. 2014-0310]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inverted pendulum is a popular model for describing bipedal dynamic walking. The operating point of the walker can be specified by the combination of initial mid-stance velocity (v(0)) and step angle (phi(m)) chosen for a given walk. In this paper, using basic mechanics, a framework of physical constraints that limit the choice of operating points is proposed. The constraint lines thus obtained delimit the allowable region of operation of the walker in the v(0)-phi(m) plane. A given average forward velocity v(x,) (avg) can be achieved by several combinations of v(0) and phi(m). Only one of these combinations results in the minimum mechanical power consumption and can be considered the optimum operating point for the given v(x, avg). This paper proposes a method for obtaining this optimal operating point based on tangency of the power and velocity contours. Putting together all such operating points for various v(x, avg,) a family of optimum operating points, called the optimal locus, is obtained. For the energy loss and internal energy models chosen, the optimal locus obtained has a largely constant step angle with increasing speed but tapers off at non-dimensional speeds close to unity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graph algorithms have been shown to possess enough parallelism to keep several computing resources busy-even hundreds of cores on a GPU. Unfortunately, tuning their implementation for efficient execution on a particular hardware configuration of heterogeneous systems consisting of multicore CPUs and GPUs is challenging, time consuming, and error prone. To address these issues, we propose a domain-specific language (DSL), Falcon, for implementing graph algorithms that (i) abstracts the hardware, (ii) provides constructs to write explicitly parallel programs at a higher level, and (iii) can work with general algorithms that may change the graph structure (morph algorithms). We illustrate the usage of our DSL to implement local computation algorithms (that do not change the graph structure) and morph algorithms such as Delaunay mesh refinement, survey propagation, and dynamic SSSP on GPU and multicore CPUs. Using a set of benchmark graphs, we illustrate that the generated code performs close to the state-of-the-art hand-tuned implementations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of structural dynamical systems excited by multiple random excitations is considered. Two new procedures for evaluating global response sensitivity measures with respect to the excitation components are proposed. The first procedure is valid for stationary response of linear systems under stationary random excitations and is based on the notion of Hellinger's metric of distance between two power spectral density functions. The second procedure is more generally valid and is based on the l2 norm based distance measure between two probability density functions. Specific cases which admit exact solutions are presented, and solution procedures based on Monte Carlo simulations for more general class of problems are outlined. Illustrations include studies on a parametrically excited linear system and a nonlinear random vibration problem involving moving oscillator-beam system that considers excitations attributable to random support motions and guide-way unevenness. (C) 2015 American Society of Civil Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optimal bounded control of quasi-integrable Hamiltonian systems with wide-band random excitation for minimizing their first-passage failure is investigated. First, a stochastic averaging method for multi-degrees-of-freedom (MDOF) strongly nonlinear quasi-integrable Hamiltonian systems with wide-band stationary random excitations using generalized harmonic functions is proposed. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximizinig reliability and maximizing mean first-passage time are formulated based on the averaged It$\ddot{\rm o}$ equations by applying the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraints. The relationship between the dynamical programming equations and the backward Kolmogorov equation for the conditional reliability function and the Pontryagin equation for the conditional mean first-passage time of optimally controlled system is discussed. Finally, the conditional reliability function, the conditional probability density and mean of first-passage time of an optimally controlled system are obtained by solving the backward Kolmogorov equation and Pontryagin equation. The application of the proposed procedure and effectiveness of control strategy are illustrated with an example.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An uncooled three-section tunable distributed Bragg reflector laser is demonstrated as an athermal transmitter for low-cost uncooled wavelength-division-multiplexing (WDM) systems with tight channel spacing. A ±0.02-nm thermal wavelength drift is achieved under continuous-wave operation up to 70 °C. Dynamic sidemode suppression ratio of greater than 35 dB is consistently obtained under 3.125-Gb/s direct modulation over a 20 °C-70 °C temperature range, with wavelength variation of as low as ±0.2 nm. This indicates that more than an order of magnitude reduction in coarse WDM channel spacing is possible using this source. © 2005 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

electrostatic torsional nano-electro-mechanical systems (NEMS) actuators is analyzed in the paper. The dependence of the critical tilting angle and voltage is investigated on the sizes of structure with the consideration of vdW effects. The pull-in phenomenon without the electrostatic torque is studied, and a critical pull-in gap is derived. A dimensionless equation of motion is presented, and the qualitative analysis of it shows that the equilibrium points of the corresponding autonomous system include center points, stable focus points, and unstable saddle points. The Hopf bifurcation points and fork bifurcation points also exist in the system. The phase portraits connecting these equilibrium points exhibit periodic orbits, heteroclinic orbits, as well as homoclinic orbits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An n degree-of-freedom Hamiltonian system with r (1¡r¡n) independent 0rst integrals which are in involution is calledpartially integrable Hamiltonian system. A partially integrable Hamiltonian system subject to light dampings andweak stochastic excitations is called quasi-partially integrable Hamiltonian system. In the present paper, the procedures for studying the 0rst-passage failure and its feedback minimization of quasi-partially integrable Hamiltonian systems are proposed. First, the stochastic averaging methodfor quasi-partially integrable Hamiltonian systems is brie4y reviewed. Then, basedon the averagedIt ˆo equations, a backwardKolmogorov equation governing the conditional reliability function, a set of generalized Pontryagin equations governing the conditional moments of 0rst-passage time and their boundary and initial conditions are established. After that, the dynamical programming equations and their associated boundary and 0nal time conditions for the control problems of maximization of reliability andof maximization of mean 0rst-passage time are formulated. The relationship between the backwardKolmogorov equation andthe dynamical programming equation for reliability maximization, andthat between the Pontryagin equation andthe dynamical programming equation for maximization of mean 0rst-passage time are discussed. Finally, an example is worked out to illustrate the proposed procedures and the e9ectiveness of feedback control in reducing 0rst-passage failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statistical Process Control (SPC) technique are well established across a wide range of industries. In particular, the plotting of key steady state variables with their statistical limit against time (Shewart charting) is a common approach for monitoring the normality of production. This paper aims with extending Shewart charting techniques to the quality monitoring of variables driven by uncertain dynamic processes, which has particular application in the process industries where it is desirable to monitor process variables on-line as well as final product. The robust approach to dynamic SPC is based on previous work on guaranteed cost filtering for linear systems and is intended to provide a basis for both a wide application of SPC monitoring and also motivate unstructured fault detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first-passage failure of quasi-integrable Hamiltonian si-stems (multidegree-of-freedom integrable Hamiltonian systems subject to light dampings and weakly random excitations) is investigated. The motion equations of such a system are first reduced to a set of averaged Ito stochastic differential equations by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then, a backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of first-passage time are established. Finally, the conditional reliability function, and the conditional probability density and moments of first-passage time are obtained by solving these equations with suitable initial and boundary conditions. Two examples are given to illustrate the proposed procedure and the results from digital simulation are obtained to verify the effectiveness of the procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by the observation of the rate effect on material failure, a model of nonlinear and nonlocal evolution is developed, that includes both stochastic and dynamic effects. In phase space a transitional region prevails, which distinguishes the failure behavior from a globally stable one to that of catastrophic. Several probability functions are found to characterize the distinctive features of evolution due to different degrees of nucleation, growth and coalescence rates. The results may provide a better understanding of material failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this article is to characterize dynamic optimal harvesting trajectories that maximize discounted utility assuming an age-structured population model, in the same line as Tahvonen (2009). The main novelty of our study is that uses as an age-structured population model the standard stochastic cohort framework applied in Virtual Population Analysis for fish stock assessment. This allows us to compare optimal harvesting in a discounted economic context with standard reference points used by fisheries agencies for long term management plans (e.g. Fmsy). Our main findings are the following. First, optimal steady state is characterized and sufficient conditions that guarantees its existence and uniqueness for the general case of n cohorts are shown. It is also proved that the optimal steady state coincides with the traditional target Fmsy when the utility function to be maximized is the yield and the discount rate is zero. Second, an algorithm to calculate the optimal path that easily drives the resource to the steady state is developed. And third, the algorithm is applied to the Northern Stock of hake. Results show that management plans based exclusively on traditional reference targets as Fmsy may drive fishery economic results far from the optimal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we introduce four scenario Cluster based Lagrangian Decomposition (CLD) procedures for obtaining strong lower bounds to the (optimal) solution value of two-stage stochastic mixed 0-1 problems. At each iteration of the Lagrangian based procedures, the traditional aim consists of obtaining the solution value of the corresponding Lagrangian dual via solving scenario submodels once the nonanticipativity constraints have been dualized. Instead of considering a splitting variable representation over the set of scenarios, we propose to decompose the model into a set of scenario clusters. We compare the computational performance of the four Lagrange multiplier updating procedures, namely the Subgradient Method, the Volume Algorithm, the Progressive Hedging Algorithm and the Dynamic Constrained Cutting Plane scheme for different numbers of scenario clusters and different dimensions of the original problem. Our computational experience shows that the CLD bound and its computational effort depend on the number of scenario clusters to consider. In any case, our results show that the CLD procedures outperform the traditional LD scheme for single scenarios both in the quality of the bounds and computational effort. All the procedures have been implemented in a C++ experimental code. A broad computational experience is reported on a test of randomly generated instances by using the MIP solvers COIN-OR and CPLEX for the auxiliary mixed 0-1 cluster submodels, this last solver within the open source engine COIN-OR. We also give computational evidence of the model tightening effect that the preprocessing techniques, cut generation and appending and parallel computing tools have in stochastic integer optimization. Finally, we have observed that the plain use of both solvers does not provide the optimal solution of the instances included in the testbed with which we have experimented but for two toy instances in affordable elapsed time. On the other hand the proposed procedures provide strong lower bounds (or the same solution value) in a considerably shorter elapsed time for the quasi-optimal solution obtained by other means for the original stochastic problem.