973 resultados para sterol biosynthesis
Resumo:
Escherichia coli adapts its lifestyle to the variations of environmental growth conditions, swapping between swimming motility or biofilm formation. The stationary-phase sigma factor RpoS is an important regulator of this switch, since it stimulates adhesion and represses flagellar biosynthesis. By measuring the dynamics of gene expression, we show that RpoS inhibits the transcription of the flagellar sigma factor, FliA, in exponential growth phase. RpoS also partially controls the expression of CsgD and CpxR, two transcription factors important for bacterial adhesion. We demonstrate that these two regulators repress the transcription of fliA, flgM, and tar and that this regulation is dependent on the growth medium. CsgD binds to the flgM and fliA promoters around their -10 promoter element, strongly suggesting direct repression. We show that CsgD and CpxR also affect the expression of other known modulators of cell motility. We propose an updated structure of the regulatory network controlling the choice between adhesion and motility.
Identification of Leishmania major cysteine proteinases as targets of the immune response in humans.
Resumo:
In this study, we report the identification of two parasite polypeptides recognized by human sera of patients infected with Leishmania major. Isolation and sequencing of the two genes encoding these polypeptides revealed that one of the genes is similar to the L. major cathepsin L-like gene family CPB, whereas the other gene codes for the L. major homologue of the cysteine proteinase a (CPA) of L. mexicana. By restriction enzyme digestion of genomic DNA, we show that the CPB gene is present in multiple copies in contrast to the cysteine proteinase CPA gene which could be unique. Specific antibodies directed against the mature regions of both types expressed in Escherichia coli were used to analyze the expression of these polypeptides in different stages of the parasite's life cycle. Polypeptides of 27 and 40 kDa in size, corresponding to CPA and CPB respectively, were detected at higher level in amastigotes than in stationary phase promastigotes. Purified recombinant CPs were also used to examine the presence of specific antibodies in sera from either recovered or active cases of cutaneous leishmaniasis patients. Unlike sera from healthy uninfected controls, all the sera reacted with recombinant CPA and CPB. This finding indicates that individuals having recovered from cutaneous leishmaniasis or with clinically apparent disease have humoral responses to cysteine proteinases demonstrating the importance of these proteinases as targets of the immune response and also their potential use for serodiagnosis.
Resumo:
Orphan receptors of the FTZ-F1-related group of nuclear receptors (xFF1r) were identified in Xenopus laevis by isolation of cDNAs from a neurula stage library. Two cDNAs were found, which encode full length, highly related receptor proteins, xFF1rA and B, whose closet relative known so far is the murine LRH-1 orphan receptor. xFF1rA protein expressed by a recombinant vaccinia virus system specifically binds to FTZ-F1 response elements (FRE; PyCAAGGPyCPu). In cotransfection studies, xFF1rA constitutively activates transcription, in a manner dependent on the number of FREs. The amounts of at least four mRNAs encoding full-length receptors greatly increase between gastrula and early tailbud stages and decrease at later stages. At early tailbud stages, xFTZ-F1-related antigens are found in all nuclei of the embryo.
Resumo:
Dendritic cell (DC) populations consist of multiple subsets that are essential orchestrators of the immune system. Technological limitations have so far prevented systems-wide accurate proteome comparison of rare cell populations in vivo. Here, we used high-resolution mass spectrometry-based proteomics, combined with label-free quantitation algorithms, to determine the proteome of mouse splenic conventional and plasmacytoid DC subsets to a depth of 5,780 and 6,664 proteins, respectively. We found mutually exclusive expression of pattern recognition pathways not previously known to be different among conventional DC subsets. Our experiments assigned key viral recognition functions to be exclusively expressed in CD4(+) and double-negative DCs. The CD8alpha(+) DCs largely lack the receptors required to sense certain viruses in the cytoplasm. By avoiding activation via cytoplasmic receptors, including retinoic acid-inducible gene I, CD8alpha(+) DCs likely gain a window of opportunity to process and present viral antigens before activation-induced shutdown of antigen presentation pathways occurs.
Resumo:
The B cell-activating factor from the tumor necrosis factor family (BAFF) is an important regulator of B cell immunity. Recently, we demonstrated that recombinant BAFF also provides a co-stimulatory signal to T cells. Here, we studied expression of BAFF in peripheral blood leukocytes and correlated this expression with BAFF T cell co-stimulatory function. BAFF is produced by antigen-presenting cells (APC). Blood dendritic cells (DC) as well as DC differentiated in vitro from monocytes or CD34+ stem cells express BAFF mRNA. Exposure to bacterial products further up-regulates BAFF production in these cells. A low level of BAFF transcription, up-regulated upon TCR stimulation, was also detected in T cells. Functionally, blockade of endogenous BAFF produced by APC and, to a lesser extent, by T cells inhibits T cell activation. Altogether, this indicates that BAFF may regulate T cell immunity during APC-T cell interactions and as an autocrine factor once T cells have detached from the APC.
Resumo:
The distribution of the fibronectin-rich extracellular matrix (ECM) in the chick embryo during formation of the blastula has been evaluated semiquantitatively using an electron microscopical immunogold staining technique. During the first 10 h of postlaying development, fibronectin was found in both embryonic area pellucida and extra-embryonic area opaca of the blastoderm. In the area pellucida, the fibronectin was (1) associated with the basal lamina of the epiblast, (2) present between epiblastic and hypoblastic cells and (3) occasionally internalized in hypoblastic cells. Along the embryonic axis, a transient and high density of ECM was associated with the front of the anteriorly and rapidly expanding hypoblast. Very high density of fibronectin was observed in the marginal zone of the area pellucida, where the epiblastic and deeper cell layers show contacts and intense re-arrangements. In the area opaca, fibronectin was at first found only sporadically between contacting cells, but its density increased steadily and markedly during the first day of development. These rapid and significant changes in the regional distribution of fibronectin-rich ECM are discussed with respect to the early morphogenesis of the chick embryo.
Resumo:
BACKGROUND: Selenoproteins are a diverse family of proteins notable for the presence of the 21st amino acid, selenocysteine. Until very recently, all metazoan genomes investigated encoded selenoproteins, and these proteins had therefore been believed to be essential for animal life. Challenging this assumption, recent comparative analyses of insect genomes have revealed that some insect genomes appear to have lost selenoprotein genes. METHODOLOGY/PRINCIPAL FINDINGS: In this paper we investigate in detail the fate of selenoproteins, and that of selenoprotein factors, in all available arthropod genomes. We use a variety of in silico comparative genomics approaches to look for known selenoprotein genes and factors involved in selenoprotein biosynthesis. We have found that five insect species have completely lost the ability to encode selenoproteins and that selenoprotein loss in these species, although so far confined to the Endopterygota infraclass, cannot be attributed to a single evolutionary event, but rather to multiple, independent events. Loss of selenoproteins and selenoprotein factors is usually coupled to the deletion of the entire no-longer functional genomic region, rather than to sequence degradation and consequent pseudogenisation. Such dynamics of gene extinction are consistent with the high rate of genome rearrangements observed in Drosophila. We have also found that, while many selenoprotein factors are concomitantly lost with the selenoproteins, others are present and conserved in all investigated genomes, irrespective of whether they code for selenoproteins or not, suggesting that they are involved in additional, non-selenoprotein related functions. CONCLUSIONS/SIGNIFICANCE: Selenoproteins have been independently lost in several insect species, possibly as a consequence of the relaxation in insects of the selective constraints acting across metazoans to maintain selenoproteins. The dispensability of selenoproteins in insects may be related to the fundamental differences in antioxidant defense between these animals and other metazoans.
Resumo:
An unusual subset of mature T cells expresses natural killer (NK) cell-related surface markers such as interleukin-2 receptor beta (IL-2R beta; CD122) and the polymorphic antigen NK1.1. These "NK-like" T cells are distinguished by their highly skewed V alpha and V beta repertoire and by their ability to rapidly produce large amounts of IL-4 upon T cell receptor (TCR) engagement. The inbred mouse strain SJL (which expresses NK1.1 on its NK cells) has recently been reported to lack NK1.1+ T cells and consequently to be deficient in IL-4 production upon TCR stimulation. We show here, however, that SJL mice have normal numbers of IL-2R beta+ T cells with a skewed V beta repertoire characteristic of "NK-like" T cells. Furthermore lack of NK1.1 expression on IL-2R beta+ T cells in SJL mice was found by backcross analysis to be controlled by a single recessive gene closely linked to the NKR-P1 complex on chromosome 6 (which encodes the NK1.1 antigen). Analysis of a panel of inbred mouse strains further demonstrated that lack of NK1.1 expression on IL-2R beta+ T cells segregated with NKR-P1 genotype (as assessed by restriction fragment length polymorphism) and thus was not restricted to the SJL strain. In contrast, defective TCR induced IL-4 production (which appeared to be a unique property of SJL mice) seems to be controlled by two recessive genes unlinked to NKR-P1. Collectively, our data indicate that "NK-like" T cells develop normally in SJL mice despite genetically distinct defects in NK1.1 expression and inducible IL-4 production.
Resumo:
Hyperammonemia in neonates and infants affects brain development and causes mental retardation. We report that ammonium impaired cholinergic axonal growth and altered localization and phosphorylation of intermediate neurofilament protein in rat reaggregated brain cell primary cultures. This effect was restricted to the phase of early maturation but did not occur after synaptogenesis. Exposure to NH4Cl decreased intracellular creatine, phosphocreatine, and ADP. We demonstrate that creatine cotreatment protected axons from ammonium toxic effects, although this did not restore high-energy phosphates. The protection by creatine was glial cell-dependent. Our findings suggest that the means to efficiently sustain CNS creatine concentration in hyperammonemic neonates and infants should be assessed to prevent impairment of axonogenesis and irreversible brain damage.
Resumo:
The peroxisome proliferator activated receptors (PPARs) are ligand activated receptors which belong to the nuclear hormone receptor family. As with other members of this superfamily, it is thought that the ability of PPAR to bind to a ligand was acquired during metazoan evolution. Three different PPAR isotypes (PPARalpha, PPARbeta, also called 6, and PPARgamma) have been identified in various species. Upon binding to an activator, these receptors stimulate the expression of target genes implicated in important metabolic pathways. The present article is a review of PPAR expression and involvement in some aspects of Xenopus laevis and rodent embryonic development. PPARalpha and beta are ubiquitously expressed in Xenopus early embryos but become more tissue restricted later in development. In rodents, PPARalpha, PPARbeta and PPARgamma show specific time- and tissue-dependent patterns of expression during fetal development and in the adult animals. PPARs are implicated in several aspects of tissue differentiation and rodent development, such as differentiation of the adipose tissue, brain, placenta and skin. Particular attention is given to studies undertaken by us and others on the implication of PPARalpha and beta in rodent epidermal differentiation.
Resumo:
For self-pollinating plants to reproduce, male and female organ development must be coordinated as flowers mature. The Arabidopsis transcription factors AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 regulate this complex process by promoting petal expansion, stamen filament elongation, anther dehiscence, and gynoecium maturation, thereby ensuring that pollen released from the anthers is deposited on the stigma of a receptive gynoecium. ARF6 and ARF8 induce jasmonate production, which in turn triggers expression of MYB21 and MYB24, encoding R2R3 MYB transcription factors that promote petal and stamen growth. To understand the dynamics of this flower maturation regulatory network, we have characterized morphological, chemical, and global gene expression phenotypes of arf, myb, and jasmonate pathway mutant flowers. We found that MYB21 and MYB24 promoted not only petal and stamen development but also gynoecium growth. As well as regulating reproductive competence, both the ARF and MYB factors promoted nectary development or function and volatile sesquiterpene production, which may attract insect pollinators and/or repel pathogens. Mutants lacking jasmonate synthesis or response had decreased MYB21 expression and stamen and petal growth at the stage when flowers normally open, but had increased MYB21 expression in petals of older flowers, resulting in renewed and persistent petal expansion at later stages. Both auxin response and jasmonate synthesis promoted positive feedbacks that may ensure rapid petal and stamen growth as flowers open. MYB21 also fed back negatively on expression of jasmonate biosynthesis pathway genes to decrease flower jasmonate level, which correlated with termination of growth after flowers have opened. These dynamic feedbacks may promote timely, coordinated, and transient growth of flower organs.
Resumo:
FANCM binds and remodels replication fork structures in vitro. We report that in vivo, FANCM controls DNA chain elongation in an ATPase-dependent manner. In the presence of replication inhibitors that do not damage DNA, FANCM counteracts fork movement, possibly by remodelling fork structures. Conversely, through damaged DNA, FANCM promotes replication and recovers stalled forks. Hence, the impact of FANCM on fork progression depends on the underlying hindrance. We further report that signalling through the checkpoint effector kinase Chk1 prevents FANCM from degradation by the proteasome after exposure to DNA damage. FANCM also acts in a feedback loop to stabilize Chk1. We propose that FANCM is a ringmaster in the response to replication stress by physically altering replication fork structures and by providing a tight link to S-phase checkpoint signalling.
Resumo:
P>1. Entomopathogenic nematodes can function as indirect defence for plants that are attacked by root herbivores. By releasing volatile organic compounds (VOCs), plants signal the presence of host insects and thereby attract nematodes.2. Nonetheless, how roots deploy indirect defences, how indirect defences relate to direct defences, and the ecological consequences of root defence allocation for herbivores and plant biomass are essentially unknown.3. We investigate a natural below-ground tritrophic system, involving common milkweed, a specialist root-boring beetle and entomopathogenic nematodes, and asked whether there is a negative genetic correlation between direct defences (root cardenolides) and indirect defences (emission of volatiles in the roots and nematode attraction), and between constitutive and inducible defences.4. Volatiles of roots were analysed using two distinct sampling methods. First, we collected emissions from living Asclepias syriaca roots by dynamic headspace sampling. This method showed that attacked A. syriaca plants emit five times higher levels of volatiles than control plants. Secondly, we used a solid phase micro-extraction (SPME) method to sample the full pool of volatiles in roots for genetic correlations of volatile biosynthesis.5. Field experiments showed that entomopathogenic nematodes prevent the loss of biomass to root herbivory. Additionally, suppression of root herbivores was mediated directly by cardenolides and indirectly by the attraction of nematodes. Genetic families of plants with high cardenolides benefited less from nematodes compared to low-cardenolide families, suggesting that direct and indirect defences may be redundant. Although constitutive and induced root defences traded off within each strategy (for both direct and indirect defence, cardenolides and VOCs, respectively), we found no trade-off between the two strategies.6. Synthesis. Constitutive expression and inducibility of defences may trade off because of resource limitation or because they are redundant. Direct and indirect defences do not trade off, likely because they may not share a limiting resource and because independently they may promote defence across the patchiness of herbivore attack and nematode presence in the field. Indeed, some redundancy in strategies may be necessary to increase effective defence, but for each strategy, an economy of deployment reduces overall costs.
Resumo:
Malaria in pregnancy forms a substantial part of the worldwide burden of malaria, with an estimated annual death toll of up to 200,000 infants, as well as increased maternal morbidity and mortality. Studies of genetic susceptibility to malaria have so far focused on infant malaria, with only a few studies investigating the genetic basis of placental malaria, focusing only on a limited number of candidate genes. The aim of this study therefore was to identify novel host genetic factors involved in placental malaria infection. To this end we carried out a nested case-control study on 180 Mozambican pregnant women with placental malaria infection, and 180 controls within an intervention trial of malaria prevention. We genotyped 880 SNPs in a set of 64 functionally related genes involved in glycosylation and innate immunity. A SNP located in the gene FUT9, rs3811070, was significantly associated with placental malaria infection (OR = 2.31, permutation p-value = 0.028). Haplotypic analysis revealed a similarly strong association of a common haplotype of four SNPs including rs3811070. FUT9 codes for a fucosyl-transferase that is catalyzing the last step in the biosynthesis of the Lewis-x antigen, which forms part of the Lewis blood group-related antigens. These results therefore suggest an involvement of this antigen in the pathogenesis of placental malaria infection.
Resumo:
Placental malaria is a special form of malaria that causes up to 200,000 maternal and infant deaths every year. Previous studies show that two receptor molecules, hyaluronic acid and chondroitin sulphate A, are mediating the adhesion of parasite-infected erythrocytes in the placenta of patients, which is believed to be a key step in the pathogenesis of the disease. In this study, we aimed at identifying sites of malaria-induced adaptation by scanning for signatures of natural selection in 24 genes in the complete biosynthesis pathway of these two receptor molecules. We analyzed a total of 24 Mb of publicly available polymorphism data from the International HapMap project for three human populations with European, Asian and African ancestry, with the African population from a region of presently and historically high malaria prevalence. Using the methods based on allele frequency distributions, genetic differentiation between populations, and on long-range haplotype structure, we found only limited evidence for malaria-induced genetic adaptation in this set of genes in the African population; however, we identified one candidate gene with clear evidence of selection in the Asian population. Although historical exposure to malaria in this population cannot be ruled out, we speculate that it might be caused by other pathogens, as there is growing evidence that these molecules are important receptors in a variety of host-pathogen interactions. We propose to use the present methods in a systematic way to help identify candidate regions under positive selection as a consequence of malaria.