944 resultados para stereo vision,stereo matching,cuda,lisp,connection machine
Resumo:
The present research deals with the review of the analysis and modeling of Swiss franc interest rate curves (IRC) by using unsupervised (SOM, Gaussian Mixtures) and supervised machine (MLP) learning algorithms. IRC are considered as objects embedded into different feature spaces: maturities; maturity-date, parameters of Nelson-Siegel model (NSM). Analysis of NSM parameters and their temporal and clustering structures helps to understand the relevance of model and its potential use for the forecasting. Mapping of IRC in a maturity-date feature space is presented and analyzed for the visualization and forecasting purposes.
Resumo:
Radioactive soil-contamination mapping and risk assessment is a vital issue for decision makers. Traditional approaches for mapping the spatial concentration of radionuclides employ various regression-based models, which usually provide a single-value prediction realization accompanied (in some cases) by estimation error. Such approaches do not provide the capability for rigorous uncertainty quantification or probabilistic mapping. Machine learning is a recent and fast-developing approach based on learning patterns and information from data. Artificial neural networks for prediction mapping have been especially powerful in combination with spatial statistics. A data-driven approach provides the opportunity to integrate additional relevant information about spatial phenomena into a prediction model for more accurate spatial estimates and associated uncertainty. Machine-learning algorithms can also be used for a wider spectrum of problems than before: classification, probability density estimation, and so forth. Stochastic simulations are used to model spatial variability and uncertainty. Unlike regression models, they provide multiple realizations of a particular spatial pattern that allow uncertainty and risk quantification. This paper reviews the most recent methods of spatial data analysis, prediction, and risk mapping, based on machine learning and stochastic simulations in comparison with more traditional regression models. The radioactive fallout from the Chernobyl Nuclear Power Plant accident is used to illustrate the application of the models for prediction and classification problems. This fallout is a unique case study that provides the challenging task of analyzing huge amounts of data ('hard' direct measurements, as well as supplementary information and expert estimates) and solving particular decision-oriented problems.
Resumo:
A novel type of triple-stranded DNA structure was proposed by several groups to play a crucial role in homologous recognition between single- and double-stranded DNA molecules. In this still putative structure a duplex DNA was proposed to co-ordinate a homologous single strand in its major groove side. In contrast to the well-characterized pyrimidine-purine-pyrimidine triplexes in which the two like strands are antiparallel and which are restricted to poly-pyrimidine-containing stretches, the homology-specific triplexes would have like strands in parallel orientation and would not be restricted to any particular sequence provided that there is a homology between interacting DNA molecules. For many years the stereo-chemical possibility of forming homology-dependent three- or four-stranded DNA structures during the pairing stage of recombination reactions was seriously considered in published papers. However, only recently has there been a marked increase in the number of papers that have directly tested the formation of triple-stranded DNA structures during the actual pairing stage of the recombination reaction. Unfortunately the results of these tests are not totally clear cut; while some laboratories presented experimental evidence consistent with the formation of triplexes, others studying the same or very similar systems offered alternative explanations. The aim of this review is to present the current state of the central question in the mechanism of homologous recombination, namely, what kind of DNA structure is responsible for DNA homologous recognition. Is it a novel triplex structure or just a classical duplex?
Resumo:
Avalanche forecasting is a complex process involving the assimilation of multiple data sources to make predictions over varying spatial and temporal resolutions. Numerically assisted forecasting often uses nearest neighbour methods (NN), which are known to have limitations when dealing with high dimensional data. We apply Support Vector Machines to a dataset from Lochaber, Scotland to assess their applicability in avalanche forecasting. Support Vector Machines (SVMs) belong to a family of theoretically based techniques from machine learning and are designed to deal with high dimensional data. Initial experiments showed that SVMs gave results which were comparable with NN for categorical and probabilistic forecasts. Experiments utilising the ability of SVMs to deal with high dimensionality in producing a spatial forecast show promise, but require further work.
Resumo:
The theory of small-world networks as initiated by Watts and Strogatz (1998) has drawn new insights in spatial analysis as well as systems theory. The theoryâeuro?s concepts and methods are particularly relevant to geography, where spatial interaction is mainstream and where interactions can be described and studied using large numbers of exchanges or similarity matrices. Networks are organized through direct links or by indirect paths, inducing topological proximities that simultaneously involve spatial, social, cultural or organizational dimensions. Network synergies build over similarities and are fed by complementarities between or inside cities, with the two effects potentially amplifying each other according to the âeurooepreferential attachmentâeuro hypothesis that has been explored in a number of different scientific fields (Barabási, Albert 1999; Barabási A-L 2002; Newman M, Watts D, Barabà si A-L). In fact, according to Barabási and Albert (1999), the high level of hierarchy observed in âeurooescale-free networksâeuro results from âeurooepreferential attachmentâeuro, which characterizes the development of networks: new connections appear preferentially close to nodes that already have the largest number of connections because in this way, the improvement in the network accessibility of the new connection will likely be greater. However, at the same time, network regions gathering dense and numerous weak links (Granovetter, 1985) or network entities acting as bridges between several components (Burt 2005) offer a higher capacity for urban communities to benefit from opportunities and create future synergies. Several methodologies have been suggested to identify such denser and more coherent regions (also called communities or clusters) in terms of links (Watts, Strogatz 1998; Watts 1999; Barabási, Albert 1999; Barabási 2002; Auber 2003; Newman 2006). These communities not only possess a high level of dependency among their member entities but also show a low level of âeurooevulnerabilityâeuro, allowing for numerous redundancies (Burt 2000; Burt 2005). The SPANGEO project 2005âeuro"2008 (SPAtial Networks in GEOgraphy), gathering a team of geographers and computer scientists, has included empirical studies to survey concepts and measures developed in other related fields, such as physics, sociology and communication science. The relevancy and potential interpretation of weighted or non-weighted measures on edges and nodes were examined and analyzed at different scales (intra-urban, inter-urban or both). New classification and clustering schemes based on the relative local density of subgraphs were developed. The present article describes how these notions and methods contribute on a conceptual level, in terms of measures, delineations, explanatory analyses and visualization of geographical phenomena.
Resumo:
Although cross-sectional diffusion tensor imaging (DTI) studies revealed significant white matter changes in mild cognitive impairment (MCI), the utility of this technique in predicting further cognitive decline is debated. Thirty-five healthy controls (HC) and 67 MCI subjects with DTI baseline data were neuropsychologically assessed at one year. Among them, there were 40 stable (sMCI; 9 single domain amnestic, 7 single domain frontal, 24 multiple domain) and 27 were progressive (pMCI; 7 single domain amnestic, 4 single domain frontal, 16 multiple domain). Fractional anisotropy (FA) and longitudinal, radial, and mean diffusivity were measured using Tract-Based Spatial Statistics. Statistics included group comparisons and individual classification of MCI cases using support vector machines (SVM). FA was significantly higher in HC compared to MCI in a distributed network including the ventral part of the corpus callosum, right temporal and frontal pathways. There were no significant group-level differences between sMCI versus pMCI or between MCI subtypes after correction for multiple comparisons. However, SVM analysis allowed for an individual classification with accuracies up to 91.4% (HC versus MCI) and 98.4% (sMCI versus pMCI). When considering the MCI subgroups separately, the minimum SVM classification accuracy for stable versus progressive cognitive decline was 97.5% in the multiple domain MCI group. SVM analysis of DTI data provided highly accurate individual classification of stable versus progressive MCI regardless of MCI subtype, indicating that this method may become an easily applicable tool for early individual detection of MCI subjects evolving to dementia.
Resumo:
The objective of this project was to use a Global Positioning System (GPS) to determine the aerial camera location and orientation that best facilitated mapping done from aerial photographs without any ground control. Four test flights were conducted. The first test flight was performed in June 1993 at St. Louis, with the objective of testing the multiantenna concept using two antenna on the aircraft. The second test in August 1993 was conducted over the Iowa State University (ISU) campus at Ames. This flight evaluated the use of GPS for pinpoint navigation. The third test flight over St. Louis was flown in October 1993, with four antenna on aircraft; its objective was to evaluate the 3DF GPS receiver and the antenna locations. On the basis of the results of these three tests, a final test flight over the Mustang Project area in Ames and the ISU campus was conducted in June 1994. Analysis of these data showed that airborne GPS can be used (1) in pinpoint navigation with an accuracy of 25 m or better, (2) to determine the location of the camera nodal point with an accuracy of 10 cm or better, and (3) to determine the orientation angles of the camera with an accuracy of 0.0001 radians or better. In addition, the exterior orientation elements determined by airborne GPS can be used to rectify aerial photos, to produce orthophotos, and in direct stereo plotting. Further research is recommended in these areas to maximize the use of airborne GPS. The report is organized in the following chapters: (1) Introduction; (2) Photogrammetry and Kinematic GPS; (3) Analysis of First Test; (4) Analysis of Second Test; (5) Analysis of Third Test; (6) Analysis of Final Test; (7) Applications of Airborne GPS; and (8) Conclusion and Recommendation.
Resumo:
A Newsletter from the Iowa Office of Consumer Affairs
Resumo:
A Newsletter from the Iowa Office of Consumer Affairs
Resumo:
Proponents of microalgae biofuel technologies often claim that the world demand of liquid fuels, about 5 trillion liters per year, could be supplied by microalgae cultivated on only a few tens of millions of hectares. This perspective reviews this subject and points out that such projections are greatly exaggerated, because (1) the pro- ductivities achieved in large-scale commercial microalgae production systems, operated year-round, do not surpass those of irrigated tropical crops; (2) cultivating, harvesting and processing microalgae solely for the production of biofuels is simply too expensive using current or prospective technology; and (3) currently available (limited) data suggest that the energy balance of algal biofuels is very poor. Thus, microalgal biofuels are no panacea for depleting oil or global warming, and are unlikely to save the internal combustion machine.
Resumo:
Doctoral dissertation, University of Turku