932 resultados para stepwise selection to cefotaxime resistance
Resumo:
Os ideais de liberdade exigiram do povo negro diferenciadas práticas para romper com o sistema escravista. Eram as rebeliões em navios, os atos de infanticídio, os justiçamentos dos feitores, as revoltas, além de participações em movimentos libertários e formações de quilombos. Dentre estas formas de organização, o quilombo foi fenômeno essencial nos mais de 300 anos de escravismo no Brasil. Em cada região existiam quilombos, pois para a população negra, cativa ou não, esse era o melhor meio de alcançar a liberdade, um meio coletivo para enfrentar o sistema. O Quilombo do Urubu representou a insistência em garantir a condição humana que o regime escravista negava, sobretudo às mulheres, aos homens e às crianças negras. Essa era uma força que saía de suas entranhas como grito de liberdade, configurada nas fugas em busca de um lugar que lhes assegurasse aproximação de uma vida digna e que pudessem orgulhar-sedo seu porte físico e da sua cultura. Todo esse desprendimento, além de uma força física, exigia um completo conhecimento histórico e espiritual, resguardado pela religiosidade que fortalecia seus espíritos para lutar contra toda negação de humanidade do século XIX no subúrbio da capital baiana. A líder Zeferina, inconformada com a exclusão social de seu povo negro, e entusiasmada pelo poder de herança de ancestralidade, pelo conhecimento de raiz da cultura matrilinear angolana, pelo profundo conhecimento histórico de resistência da rainha Nzinga Mbandi e pela tradição de quilombolas e guerreiras, viveu e lutou pelo sonho de liberdade. Hoje, a chama desse poder é mantida acesa na caminhada de celebração do 20 de novembro pela comunidade de Pirajá e arredores, enquanto referencial de resistência negra na luta contra as exclusões sociais vigentes.(AU)
Resumo:
O trabalho desenvolvido com adolescentes, pensando na promoção de sua saúde, bem como em seu desenvolvimento saudável por meio de espaços que atendam suas necessidades, tem sido de responsabilidade também de organizações sociais. Em especial, quando se tem o objetivo de prepará- los para o mundo do trabalho, porém com uma proposta mais ampla, ou seja, como uma preparação para suas relações na vida, pela passagem de um processo de aprendizagem, de amadurecimento, por meio da construção de ações significativas para vida. Esta é a proposta do Centro de Orientação ao Adolescente de Campinas COMEC , organização não governamental, que conta com um Progr ama de Aprendizagem Profissional- PAP . Sendo assim, esse estudo tem como objetivo caracterizar, por meio de prontuários, uma amostra de 280 adolescentes, compreender a percepção deles no processo vivido e identificar as expectativas na admissão, demissão e desligamento do programa - PAP. A pesquisa teve como participantes adolescentes de 14 a 17 anos, do gênero feminino e masculino, do ensino fundamental e médio (7ª série E.F até 3ª série E.M). Os formulários foram preenchidos em três momentos: primeiro quando o adolescente participava da seleção para ingressar no programa, segundo, quando ele iniciava o trabalho na empresa e no término do contrato do adolescente com o programa. Os resultados obtidos por meio dos prontuários dos adolescentes mostraram que a percepção que eles têm a respeito do programa é positiva. Perceberam-se sentimentos de medo, insegurança, alegrias e desejos a respeito das atividades que os preparam para a inserção no mercado formal de trabalho, e o quanto o acompanhamento pelo programa permite outro olhar para esta inclusão. Ainda que o trabalho juvenil não seja a solução para as necessidades econômicas de muitas famílias, o trabalho educativo tem sido visto como uma forma de permitir que o adolescente vivencie sua primeira experiência de trabalho, respeitando sua condição de pessoa em desenvolvimento. Porém, em alguns casos, acabam por contribuir de forma significativa no orçamento familiar.(AU)
Resumo:
O trabalho desenvolvido com adolescentes, pensando na promoção de sua saúde, bem como em seu desenvolvimento saudável por meio de espaços que atendam suas necessidades, tem sido de responsabilidade também de organizações sociais. Em especial, quando se tem o objetivo de prepará- los para o mundo do trabalho, porém com uma proposta mais ampla, ou seja, como uma preparação para suas relações na vida, pela passagem de um processo de aprendizagem, de amadurecimento, por meio da construção de ações significativas para vida. Esta é a proposta do Centro de Orientação ao Adolescente de Campinas COMEC , organização não governamental, que conta com um Progr ama de Aprendizagem Profissional- PAP . Sendo assim, esse estudo tem como objetivo caracterizar, por meio de prontuários, uma amostra de 280 adolescentes, compreender a percepção deles no processo vivido e identificar as expectativas na admissão, demissão e desligamento do programa - PAP. A pesquisa teve como participantes adolescentes de 14 a 17 anos, do gênero feminino e masculino, do ensino fundamental e médio (7ª série E.F até 3ª série E.M). Os formulários foram preenchidos em três momentos: primeiro quando o adolescente participava da seleção para ingressar no programa, segundo, quando ele iniciava o trabalho na empresa e no término do contrato do adolescente com o programa. Os resultados obtidos por meio dos prontuários dos adolescentes mostraram que a percepção que eles têm a respeito do programa é positiva. Perceberam-se sentimentos de medo, insegurança, alegrias e desejos a respeito das atividades que os preparam para a inserção no mercado formal de trabalho, e o quanto o acompanhamento pelo programa permite outro olhar para esta inclusão. Ainda que o trabalho juvenil não seja a solução para as necessidades econômicas de muitas famílias, o trabalho educativo tem sido visto como uma forma de permitir que o adolescente vivencie sua primeira experiência de trabalho, respeitando sua condição de pessoa em desenvolvimento. Porém, em alguns casos, acabam por contribuir de forma significativa no orçamento familiar.(AU)
Resumo:
P-glycoprotein (MDR-1) is a well-known transporter that mediates efflux of chemotherapeutic agents from the intracellular milieu and thereby contributes to drug resistance. MDR-1 also is expressed by nonmalignant cells, including leukocytes, but physiologic functions for MDR-1 are poorly defined. Using an initial screening assay that included >100 mAbs, we observed that neutralizing mAbs MRK16, UIC2, and 4E3 against MDR-1 specifically and potently blocked basal-to-apical transendothelial migration of mononuclear phagocytes, a process that may mimic their migration into lymphatic vessels. Antagonists of MDR-1 then were used in a model of authentic lymphatic clearance. In this model, antigen-presenting dendritic cells (DC) migrate out of explants of cultured human skin and into the culture medium via dermal lymphatic vessels. DC and T cells derived from skin expressed MDR-1 on their surfaces. Addition of anti-MDR-1 mAbs MRK16, UIC2, or the MDR-1 antagonist verapamil to skin explants at the onset of culture inhibited the appearance of DC, and accompanying T cells, in the culture medium by approximately 70%. Isotype-matched control mAbs against other DC molecules including CD18, CD31, and major histocompatibility complex I did not block. In the presence of MDR-1 antagonists, epidermal DC were retained in the epidermis, in contrast to control conditions. In summary, this work identifies a physiologic function for MDR-1 during the mobilization of DC and begins to elucidate how these critical antigen-presenting cells migrate from the periphery to lymph nodes to initiate T lymphocyte-mediated immunity.
Resumo:
It has been demonstrated that both salicylic acid and fungal elicitors activate a 48-kDa mitogen-activated protein kinase termed salicylic acid-induced protein kinase (SIPK) in tobacco suspension cells. Here, we show that infiltration of these agents into tobacco leaves also activates SIPK. Of particular interest, infiltration of water alone activated a kinase of the same size, possibly because of wounding and/or osmotic stresses. The kinetics of kinase activation, however, differ for these different treatments. Various mechanical stresses, including cutting and wounding by abrasion, also activated a 48-kDa kinase. By using an immune-complex kinase assay with antibodies specific for SIPK or wounding-induced protein kinase, we demonstrate that this wounding-activated 48-kDa kinase is SIPK, rather than wounding-induced protein kinase, as reported [Seo, S., Okamoto, M., Seto, H., Ishizuka, K., Sano, H. & Ohashi, Y. (1995) Science 270, 1988–1992]. Activation of SIPK after wounding was associated with tyrosine phosphorylation but not with increases in SIPK mRNA or protein levels. Thus, the same mitogen-activated protein kinase, SIPK, appears to facilitate signaling for two distinct pathways that lead to disease resistance responses and wounding responses.
Resumo:
The efficacy of chemotherapeutic agents may be determined by a number of different factors, including the genotype of the tumor cell. The p53 tumor suppressor gene frequently is mutated in human tumors, and this may contribute to chemotherapeutic resistance. We tested the requirement for wild-type p53 in the response of tumor cells to treatment with paclitaxel (trade name Taxol), an antineoplastic agent that stabilizes cellular microtubules. Although paclitaxel is broadly effective against human tumor xenografts in mice, including some known to carry p53 mutations, we found that p53-containing mouse tumor cells were significantly more sensitive to direct treatment with this drug than were p53-deficient tumor cells. In an attempt to reconcile this apparent discrepancy, we examined the requirement for p53 in the cytotoxic effects of tumor necrosis factor α (TNF-α), a cytokine released from murine macrophages upon paclitaxel treatment. Conditioned medium from paclitaxel-treated macrophages was capable of inducing p53-independent apoptosis when applied to transformed mouse embryonic fibroblasts and was inhibitable by antibodies against TNF-α. Furthermore, in response to direct treatment with TNF-α, both wild-type and p53-deficient tumor cells underwent apoptosis to similar extents and with similar kinetics. Our results suggest that the efficacy of paclitaxel in vivo may be due not only to its microtubule-stabilizing activity, but its ability to activate local release of an apoptosis-inducing cytokine.
Evolution of the Friedreich’s ataxia trinucleotide repeat expansion: Founder effect and premutations
Resumo:
Friedreich’s ataxia, the most frequent inherited ataxia, is caused, in the vast majority of cases, by large GAA repeat expansions in the first intron of the frataxin gene. The normal sequence corresponds to a moderately polymorphic trinucleotide repeat with bimodal size distribution. Small normal alleles have approximately eight to nine repeats whereas a more heterogeneous mode of large normal alleles ranges from 16 to 34 GAA. The latter class accounts for ≈17% of normal alleles. To identify the origin of the expansion mutation, we analyzed linkage disequilibrium between expansion mutations or normal alleles and a haplotype of five polymorphic markers within or close to the frataxin gene; 51% of the expansions were associated with a single haplotype, and the other expansions were associated with haplotypes that could be related to the major one by mutation at a polymorphic marker or by ancient recombination. Of interest, the major haplotype associated with expansion is also the major haplotype associated with the larger alleles in the normal size range and was almost never found associated with the smaller normal alleles. The results indicate that most if not all large normal alleles derive from a single founder chromosome and that they represent a reservoir for larger expansion events, possibly through “premutation” intermediates. Indeed, we found two such alleles (42 and 60 GAA) that underwent cataclysmic expansion to pathological range in a single generation. This stepwise evolution to large trinucleotide expansions already was suggested for myotonic dystrophy and fragile X syndrome and may relate to a common mutational mechanism, despite sequence motif differences.
Ecological factors rather than temporal factors dominate the evolution of vesicular stomatitis virus
Resumo:
Vesicular stomatitis New Jersey virus (VSV-NJ) is a rhabdovirus that causes economically important disease in cattle and other domestic animals in endemic areas from southeastern United States to northern South America. Its negatively stranded RNA genome is capable of undergoing rapid evolution, which allows phylogenetic analysis and molecular epidemiology studies to be performed. Previous epidemiological studies in Costa Rica showed the existence of at least two distinct ecological zones of high VSV-NJ activity, one located in the highlands (premontane tropical moist forest) and the other in the lowlands (tropical dry forest). We wanted to test the hypothesis that the viruses circulating in these ecological zones were genetically distinct. For this purpose, we sequenced the hypervariable region of the phosphoprotein gene for 50 VSV-NJ isolates from these areas. Phylogenetic analysis showed that viruses from each ecological zone had distinct genotypes. These genotypes were maintained in each area for periods of up to 8 years. This evolutionary pattern of VSV-NJ suggests an adaptation to ecological factors that could exert selective pressure on the virus. As previous data indicated an absence of virus adaptation to factors related to the bovine host (including immunological pressure), it appears that VSV genetic divergence represents positive selection to adapt to specific vectors and/or reservoirs at each ecological zone.
Resumo:
Staphylococcus aureus produces a virulence factor, protein A (SpA), that contains five homologous Ig-binding domains. The interactions of SpA with the Fab region of membrane-anchored Igs can stimulate a large fraction of B cells, contributing to lymphocyte clonal selection. To understand the molecular basis for this activity, we have solved the crystal structure of the complex between domain D of SpA and the Fab fragment of a human IgM antibody to 2.7-Å resolution. In the complex, helices II and III of domain D interact with the variable region of the Fab heavy chain (VH) through framework residues, without the involvement of the hypervariable regions implicated in antigen recognition. The contact residues are highly conserved in human VH3 antibodies but not in other families. The contact residues from domain D also are conserved among all SpA Ig-binding domains, suggesting that each could bind in a similar manner. Features of this interaction parallel those reported for staphylococcal enterotoxins that are superantigens for many T cells. The structural homology between Ig VH regions and the T-cell receptor Vβ regions facilitates their comparison, and both types of interactions involve lymphocyte receptor surface remote from the antigen binding site. However, T-cell superantigens reportedly interact through hydrogen bonds with T-cell receptor Vβ backbone atoms in a primary sequence-independent manner, whereas SpA relies on a sequence-restricted conformational binding with residue side chains, suggesting that this common bacterial pathogen has adopted distinct molecular recognition strategies for affecting large sets of B and T lymphocytes.
Resumo:
A tremendous wealth of data is accumulating on the variety and distribution of transposable elements (TEs) in natural populations. There is little doubt that TEs provide new genetic variation on a scale, and with a degree of sophistication, previously unimagined. There are many examples of mutations and other types of genetic variation associated with the activity of mobile elements. Mutant phenotypes range from subtle changes in tissue specificity to dramatic alterations in the development and organization of tissues and organs. Such changes can occur because of insertions in coding regions, but the more sophisticated TE-mediated changes are more often the result of insertions into 5′ flanking regions and introns. Here, TE-induced variation is viewed from three evolutionary perspectives that are not mutually exclusive. First, variation resulting from the intrinsic parasitic nature of TE activity is examined. Second, we describe possible coadaptations between elements and their hosts that appear to have evolved because of selection to reduce the deleterious effects of new insertions on host fitness. Finally, some possible cases are explored in which the capacity of TEs to generate variation has been exploited by their hosts. The number of well documented cases in which element sequences appear to confer useful traits on the host, although small, is growing rapidly.
Resumo:
The plant-intracellular interaction of the avirulence protein AvrPto of Pseudomonas syringae pathovar tomato, the agent of bacterial speck disease, and the corresponding tomato resistance protein Pto triggers responses leading to disease resistance. Pto, a serine/threonine protein kinase, also interacts with a putative downstream kinase, Pto-interactor 1, as well as with members of a family of transcription factors Pto-interactors 4, 5, and 6. These proteins are likely involved, respectively, in a phosphorylation cascade resulting in hypersensitive cell death, and in defense gene activation. The mechanism by which the interaction of AvrPto and Pto initiates defense response signaling is not known. To pursue the hypothesis that tertiary interactions are involved, we modified the yeast two-hybrid protein interaction trap and conducted a search for tomato proteins that interact with Pto only in the presence of AvrPto. Five classes of AvrPto-dependent Pto interactors were isolated, and their interaction specificity confirmed. Also, to shed light on a recently demonstrated virulence activity of AvrPto, we conducted a standard two-hybrid screen for tomato proteins in addition to Pto that interact with AvrPto: i.e., potential virulence targets or modifiers of AvrPto. By constructing an N-terminal rather than a C-terminal fusion of AvrPto to the LexA DNA binding domain, we were able to overcome autoactivation by AvrPto and identify four classes of specific AvrPto-interacting proteins.
Resumo:
An emerging topic in plant biology is whether plants display analogous elements of mammalian programmed cell death during development and defense against pathogen attack. In many plant–pathogen interactions, plant cell death occurs in both susceptible and resistant host responses. For example, specific recognition responses in plants trigger formation of the hypersensitive response and activation of host defense mechanisms, resulting in restriction of pathogen growth and disease development. Several studies indicate that cell death during hypersensitive response involves activation of a plant-encoded pathway for cell death. Many susceptible interactions also result in host cell death, although it is not clear how or if the host participates in this response. We have generated transgenic tobacco plants to express animal genes that negatively regulate apoptosis. Plants expressing human Bcl-2 and Bcl-xl, nematode CED-9, or baculovirus Op-IAP transgenes conferred heritable resistance to several necrotrophic fungal pathogens, suggesting that disease development required host–cell death pathways. In addition, the transgenic tobacco plants displayed resistance to a necrogenic virus. Transgenic tobacco harboring Bcl-xl with a loss-of-function mutation did not protect against pathogen challenge. We also show that discrete DNA fragmentation (laddering) occurred in susceptible tobacco during fungal infection, but does not occur in transgenic-resistant plants. Our data indicate that in compatible plant–pathogen interactions apoptosis-like programmed cell death occurs. Further, these animal antiapoptotic genes function in plants and should be useful to delineate resistance pathways. These genes also have the potential to generate effective disease resistance in economically important crops.
Resumo:
Bacterial and mammalian mismatch repair systems have been implicated in the cellular response to certain types of DNA damage, and genetic defects in this pathway are known to confer resistance to the cytotoxic effects of DNA-methylating agents. Such observations suggest that in addition to their ability to recognize DNA base-pairing errors, members of the MutS family may also respond to genetic lesions produced by DNA damage. We show that the human mismatch recognition activity MutSalpha recognizes several types of DNA lesion including the 1,2-intrastrand d(GpG) crosslink produced by cis-diamminedichloroplatinum(II), as well as base pairs between O6-methylguanine and thymine or cytosine, or between O4-methylthymine and adenine. However, the protein fails to recognize 1,3-intrastrand adduct produced by trans-diamminedichloroplatinum(II) at a d(GpTpG) sequence. These observations imply direct involvement of the mismatch repair system in the cytotoxic effects of DNA-methylating agents and suggest that recognition of 1,2-intrastrand cis-diamminedichloroplatinum(II) adducts by MutSalpha may be involved in the cytotoxic action of this chemotherapeutic agent.
Resumo:
The selectins are calcium-dependent C-type lectins that recognize complex anionic carbohydrate ligands, initiating many cell-cell interactions in the vascular system. Selectin blockade shows therapeutic promise in a variety of inflammatory and postischemic pathologies. However, the available oligosaccharide ligand mimetics have low affinities and show cross-reaction among the three selectins, precluding efficient and specific blockade. The SELEX (systematic evolution of ligands by exponential enrichment) process uses combinatorial chemistry and in vitro selection to yield high affinity oligonucleotides with unexpected binding specificities. Nuclease-stabilized randomized oligonucleotides subjected to SELEX against recombinant L-selectin yielded calcium-dependent antagonists with approximately 10(5) higher affinity than the conventional oligosaccharide ligand sialyl LewisX. Most of the isolated ligands shared a common consensus sequence. Unlike sialyl LewisX, these antagonists show little binding to E- or P-selectin. Moreover, they show calcium-dependent binding to native L-selectin on peripheral blood lymphocytes and block L-selectin-dependent interactions with the natural ligands on high endothelial venules.
Resumo:
The central structural feature of natural proteins is a tightly packed and highly ordered hydrophobic core. If some measure of exquisite, native-like core packing is necessary for enzymatic function, this would constitute a significant obstacle to the development of novel enzymes, either by design or by natural or experimental evolution. To test the minimum requirements for a core to provide sufficient structural integrity for enzymatic activity, we have produced mutants of the ribonuclease barnase in which 12 of the 13 core residues have together been randomly replaced by hydrophobic alternatives. Using a sensitive biological screen, we find that a strikingly high proportion of these mutants (23%) retain enzymatic activity in vivo. Further substitution at the 13th core position shows that a similar proportion of completely random hydrophobic cores supports enzyme function. Of the active mutants produced, several have no wild-type core residues. These results imply that hydrophobicity is nearly a sufficient criterion for the construction of a functional core and, in conjunction with previous studies, that refinement of a crudely functional core entails more stringent sequence constraints than does the initial attainment of crude core function. Since attainment of crude function is the critical initial step in evolutionary innovation, the relatively scant requirements contributed by the hydrophobic core would greatly reduce the initial hurdle on the evolutionary pathway to novel enzymes. Similarly, experimental development of novel functional proteins might be simplified by limiting core design to mere specification of hydrophobicity and using iterative mutation-selection to optimize core structure.