913 resultados para steel
Resumo:
In order to assess the susceptibility of candidate structural materials to liquid metal embrittlement, this work investigated the tensile behaviors of ferritic-martensitic steel in static lead bismuth eutectic (LBE). The tensile tests were carried out in static lead bismuth eutectic under different temperatures and strain rates. Pronounced liquid metal embrittlement phenomenon is observed between 200 °C and 450 °C. Total elongation is reduced greatly due to the liquid metal embrittlement in LBE environment. The range of ductility trough is larger under slow strain rate tensile (SSRT) test.
Resumo:
There is a broad consensus surrounding the ability of building information modelling (BIM) to positively impact a project by enabling greater collaboration. This paper aims to examine the development of BIM and how it can contribute to the evermore present and growing cold-formed steel (CFS) industry. This is achieved thorough a comprehensive literature review and four exploratory interviews with industry experts. Work has been carried out, for the first time, alongside one of the UK’s largest CFS Designer/Fabricators in conjunction with Northern Ireland’s leading Architectural and Town Planning Consultants in the identification and dissemination of information. The capabilities of BIM have been investigated through modeling of simple CFS structures n consultation with the project partners. By scrutinising the literature and associated interviews, the primary opportunities, as well as barriers, of BIM implementation have been investigated in the context of these companies. It is essential to develop greater understanding of the flexibility, adaptability and interoperability of BIM software as the UK construction industry faces a daunting challenge; fully collaborative 3D BIM as required by the UK Government under the “Government Construction Strategy” by 2016 in all public sector projects. This paper, and the wider study that it stems from, approaches the problem from a new angle, from sections of the construction industry that have not yet fully embedded BIM.
Resumo:
O trabalho apresentado teve origem no projecto de investigação “Tailored Thin Plasma Polymers Films for Surface Engineering of Coil Coated Steel”, financiado pelo Programa Europeu ECSC Steel Research. Sistemas de aço galvanizado pré-pintado em banda à base de poliéster e poliuretano foram submetidos a um processo de polimerização por plasma onde um filme fino foi depositado de modo a modificar as propriedades de superfície. Foram usados reactores de cátodo oco, microondas e rádio frequência para a deposição do polímero fino. Os sistemas preparados foram analisados de modo a verificar a influência do processo de polimerização por plasma na alteração das propriedades barreira dos sistemas pré-pintados em banda. Foi estudado o efeito dos diferentes passos do processo de polimerização por plasma, bem como o efeito de diferentes variáveis operatórias. A mistura precursora foi variada de modo a modificar as propriedades da superfície de modo a poder vir a obter maior hidrofobicidade, maior resistência a marcas digitais, bem como maior facilidade de limpeza. Os testes foram conduzidos em solução de NaCl 0,5 M. Para o trabalho foram usadas técnicas de análise da morfologia da superfície como Microscopia de Força Atómica e Microscopia Electrónica de Varrimento. As propriedades electroquímicas dos sistemas foram estudadas por Espectroscopia de Impedância Electroquímica. A estrutura dos filmes gerados no processo de polimerização por plasma foi caracterizada por Microscopia de Transmissão Electrónica. A modificação das propriedades ópticas devido ao processo de polimerização por plasma foi também obtida.
Resumo:
This Ph.D. research focuses on asymmetric rolling (ASR), as an alternative method for improving mechanical responses of aluminium-magnesium alloy and interstitial free (IF) steel regarding industrial requirements. Aluminium alloys are attractive materials in various industries due to their appropriate properties such as low density and corrosion resistance; however, their low formability has limited their applications. As formability of aluminium alloys can be improved through texture development, part of this dissertation is dedicated to producing the desired crystallographic texture with the ASR process. Two types of ASR (i.e. reverse and continuous asymmetric rolling) were investigated. The impact of shear deformation imposed by ASR processes on developing the desirable texture and consequently on mechanical behaviours was observed. The developed shear texture increased the normal and also planar anisotropy. Texture evolution during plastic deformation as well as induced mechanical behaviour were simulated using the “self-consistent” and Taylor models. Interstitial free (IF) steel was the second material selected in this dissertation. Since IF steel is one of the most often used materials in automotive industries it was chosen to investigate the effect of shear deformation through ASR on its properties. Two types of reverse and continuous asymmetric rolling were carried out to deform IF steel sheets. The results of optical microscopy and atomic force microscopy observations showed no significant difference between the grains’ morphology of asymmetric and conventionally rolled samples, whereas the obtained results of transmission electron microscopy indicated that fine and equiaxed dislocation cells were formed through the asymmetric rolling process. This structure is due to imposed shear deformation during the ASR process. Furthermore, the mechanical behaviour of deformed and annealed sheets was evaluated through uniaxial tensile tests. Results showed that at low thickness reductions (18%) the asymmetric rolled sample presented higher stress than that of the conventionally rolled sheet; while for higher thickness reductions (60%) the trend was reversed. The texture analyses indicated that intense rolling texture components which developed through 60% thickness reduction of conventional rolling cause a relatively higher stress; on the contrary the fine structure resulting from ASR appears to be the source of higher stress observed after pre-deformation of 18%.
Resumo:
The structural behaviour of steel-fibre-reinforced concrete beams was studied using non-linear finite-element analysis and existing experimental data. The work aim was to examine the potential of using steel fibres to reduce the amount of conventional transverse steel reinforcement without compromising ductility and strength requirements set out in design codes. To achieve this, the spacing between shear links was increased while steel fibres were added as a substitute. Parametric studies were subsequently carried out and comparisons were also made with BS EN 1992-1-1 predictions. It was concluded that the addition of steel fibres enhanced the load-carrying capacity and also altered the failure mode from a brittle shear mode to a flexural ductile one. The provision of fibres also improved ductility. However, interestingly it was found that adding excessive amounts of fibres led to a less-ductile response. Overall, the study confirmed the potential for fibres to compensate for a reduction in conventional shear reinforcement.
Resumo:
Concert Program for U.W. Percussion and Steel Drum Ensembles
Resumo:
The main aims of the present study are simultaneously to relate the brazing parameters with: (i) the correspondent interfacial microstructure, (ii) the resultant mechanical properties and (iii) the electrochemical degradation behaviour of AISI 316 stainless steel/alumina brazed joints. Filler metals on such as Ag–26.5Cu–3Ti and Ag–34.5Cu–1.5Ti were used to produce the joints. Three different brazing temperatures (850, 900 and 950 °C), keeping a constant holding time of 20 min, were tested. The objective was to understand the influence of the brazing temperature on the final microstructure and properties of the joints. The mechanical properties of the metal/ceramic (M/C) joints were assessed from bond strength tests carried out using a shear solicitation loading scheme. The fracture surfaces were studied both morphologically and structurally using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The degradation behaviour of the M/C joints was assessed by means of electrochemical techniques. It was found that using a Ag–26.5Cu–3Ti brazing alloy and a brazing temperature of 850 °C, produces the best results in terms of bond strength, 234 ± 18 MPa. The mechanical properties obtained could be explained on the basis of the different compounds identified on the fracture surfaces by XRD. On the other hand, the use of the Ag–34.5Cu–1.5Ti brazing alloy and a brazing temperature of 850 °C produces the best results in terms of corrosion rates (lower corrosion current density), 0.76 ± 0.21 μA cm−2. Nevertheless, the joints produced at 850 °C using a Ag–26.5Cu–3Ti brazing alloy present the best compromise between mechanical properties and degradation behaviour, 234 ± 18 MPa and 1.26 ± 0.58 μA cm−2, respectively. The role of Ti diffusion is fundamental in terms of the final value achieved for the M/C bond strength. On the contrary, the Ag and Cu distribution along the brazed interface seem to play the most relevant role in the metal/ceramic joints electrochemical performance.
Resumo:
The present study aims to characterize ultrafine particles emitted during gas metal arc welding of mild steel and stainless steel, using different shielding gas mixtures, and to evaluate the effect of metal transfer modes, controlled by both processing parameters and shielding gas composition, on the quantity and morphology of the ultrafine particles. It was found that the amount of emitted ultrafine particles (measured by particle number and alveolar deposited surface area) are clearly dependent from the main welding parameters, namely the current intensity and the heat input of the Welding process. The emission of airborne ultrafine particles increases with the current intensity as fume formation rate does. When comparing the shielding gas mixtures, higher emissions were observed for more oxidizing mixtures, that is, with higher CO2 content, which means that these mixtures originate higher concentrations of ultrafine particles (as measured by number of particles. by cubic centimeter of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more hazardous condition regarding welders exposure.
Resumo:
The present study is focused on the characterization of ultrafine particles emitted in welding of steel using mixtures of Ar+CO2, and intends to analyze which are the main process parameters which may have influence on the emission itself. It was found that the amount of emitted ultrafine particles (measured by particle number and alveolar deposited surface area) are clearly dependent from the distance to the welding front and also from the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne ultrafine particles seem to increase with the current intensity as fume formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. The later mixtures originate higher concentrations of ultrafine particles (as measured by number of particles by cm3 of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more hazardous condition regarding worker's exposure. © 2014 Sociedade Portuguesa de Materiais (SPM). Published by Elsevier España, S.L. All rights reserved.
Resumo:
Sulfadiazine is an antibiotic of the sulfonamide group and is used as a veterinary drug in fish farming. Monitoring it in the tanks is fundamental to control the applied doses and avoid environmental dissemination. Pursuing this goal, we included a novel potentiometric design in a flow-injection assembly. The electrode body was a stainless steel needle veterinary syringe of 0.8-mm inner diameter. A selective membrane of PVC acted as a sensory surface. Its composition, the length of the electrode, and other flow variables were optimized. The best performance was obtained for sensors of 1.5-cm length and a membrane composition of 33% PVC, 66% onitrophenyloctyl ether, 1% ion exchanger, and a small amount of a cationic additive. It exhibited Nernstian slopes of 61.0 mV decade-1 down to 1.0×10-5 mol L-1, with a limit of detection of 3.1×10-6 mol L-1 in flowing media. All necessary pH/ionic strength adjustments were performed online by merging the sample plug with a buffer carrier of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, pH 4.9. The sensor exhibited the advantages of a fast response time (less than 15 s), long operational lifetime (60 days), and good selectivity for chloride, nitrite, acetate, tartrate, citrate, and ascorbate. The flow setup was successfully applied to the analysis of aquaculture waters. The analytical results were validated against those obtained with liquid chromatography–tandem mass spectrometry procedures. The sampling rate was about 84 samples per hour and recoveries ranged from 95.9 to 106.9%.
Resumo:
Este trabalho foi realizado na Scania CV AB e teve como principal objectivo estabelecer uma diretriz sobre a possível utilização de aços vazados. Existe uma grande necessidade na realização deste trabalho, de forma a apoiar os engenheiros de projecto no seu processo de selecção dos materiais mais adequados, para produzir componentes mais leves e de elevado desempenho. Esta diretriz apresenta informação relacionada com propriedades mecânicas, processos de fundição, vazabilidade, tipologia de defeitos, tratamentos térmicos, soldabilidade e tratamentos superficiais dos aços vazados. Este trabalho foi limitado, na seleção de materiais para componentes do camião, a aços vazados que poderiam ser aplicados em dois componentes específicos: um componente estrutural da carroçaria sujeito a esforços de fadiga e a um colector de gases de combustão, sujeito a fluência, oxidação, fadiga por corrosão, fadiga-térmica e fadiga-mecânica. Foi realizado um benchmark focado nestes dois componentes de forma a saber que materiais são utilizados de momento por outras empresas concorrentes. Foi realizada ainda uma análise sobre possíveis materiais que possam ser aplicados em cada componente referido. Foi conduzida uma caracterização no estado bruto de fundição de um aço inoxidável vazado usado para produzir um protótipo do colector de gases. Esta caracterização consistiu numa análise microestrutural e medição de macro e microdurezas. Além da caracterização inicial, foram aplicados um conjunto de tratamentos térmicos, de forma a estudar a possibilidade de eliminar os carbonetos presentes inicialmente nas fronteiras de grão. As principais conclusões deste trabalho são que o aço vazado apresenta potencial para ser uma escolha válida em diversas aplicações, devido a um leque alargado de propriedades apresentadas tipicamente por este material. Relativamente a aplicações estruturais, o aço vazado é vantajoso comparativamente ao ferro fundido, quando são requeridos, por exemplo, soldabilidade e elevada resistência, combinada com elevada tenacidade à fractura. Para componentes sujeitos a elevadas temperaturas de serviço, o aço inoxidável vazado é vantajoso quando usado a temperaturas superiores a 750°C, apesar do seu elevado custo. O tratamento térmico composto por um recozimento de solubilização seguido de envelhecimento, elimina quase na totalidade os carbonetos presentes nas fronteiras de grão e verifica-se um aumento de dureza através de uma precipitação de carbonetos finamente dispersos na matriz, que poderão também aumentar a resistência à fluência.
Resumo:
Some of the steel framework goes up during construction.
Resumo:
Steel reinforcing bars used in the construction of the walls for the Aquatic Centre.