999 resultados para spectral temperature T-spe


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Straw on sowing line modifies seed germination environment regarding temperature and water content. Given these considerations, the aim of this study was to evaluate different mechanisms for coverage mobilization on the sowing line and their effect on germination environment of maize seeds, mainly in relation to the dynamics of straw in the seedbed, water content and soil temperature. Treatments consisted on the combination of two mechanisms at front of furrow opener, composed of cutting disc and row cleaners, with three mechanisms behind the seed furrower for returning the soil, consisting of three covering mechanisms, commercial and prototype models. It was found that straw presence on the surface of sowing line contributed to germination of maize seeds, maintenance of temperature and soil water content. The cutting disc treatment, associated with prototype, introduced percentages of water content near the ones in bottom layer, and this soil water content was 29.7% with 93.75% of straw coverage and deeper seeding depth, granting better conditions for seed germination. However, the straw coverage removal on soil by the row cleaners and its low sowing depth caused water loss in the lines resulting in great reduction of the emergence speed index in maize seedlings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT In animal farming, an automatic and precise control of environmental conditions needs information from variables derived from the animals themselves, i.e. they act as biosensors. Rectal temperature (RT) and respiratory rate (RR) are good indicators of thermoregulation in pigs. Since there is a growing concern on animal welfare, the search for alternatives to measure RT has become even more necessary. This research aimed to identify the most adequate body surface areas, on nursery-phase pigs, to take temperature measurements that best represent the correlation of RT and RR. The main experiment was carried out in a climate chamber with five 30-day-old littermate female Landrace x Large White piglets. Temperature conditions inside chamber were varied from 14 °C up to 35.5 °C. The measurements were taken each 30 minutes, over six different skin regions, using a temperature data logger Thermochron iButton® - DS1921G (Tb) and an infrared thermometer (Ti). As shown by the results, the tympanic region is the best one for RT and RR monitoring using an infrared thermometer (TiF). In contrast, when using temperature sensors, the ear (TbE) is preferred to be used for RT predictions and the loin region (TbC) for RR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Singular Value Decomposition (SVD), Principal Component Analysis (PCA) and Multiple Linear Regression (MLR) are some of the mathematical pre- liminaries that are discussed prior to explaining PLS and PCR models. Both PLS and PCR are applied to real spectral data and their di erences and similarities are discussed in this thesis. The challenge lies in establishing the optimum number of components to be included in either of the models but this has been overcome by using various diagnostic tools suggested in this thesis. Correspondence analysis (CA) and PLS were applied to ecological data. The idea of CA was to correlate the macrophytes species and lakes. The di erences between PLS model for ecological data and PLS for spectral data are noted and explained in this thesis. i

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased emissions of greenhouse gases into the atmosphere are causing an anthropogenic climate change. The resulting global warming challenges the ability of organisms to adapt to the new temperature conditions. However, warming is not the only major threat. In marine environments, dissolution of carbon dioxide from the atmosphere causes a decrease in surface water pH, the so called ocean acidification. The temperature and acidification effects can interact, and create even larger problems for the marine flora and fauna than either of the effects would cause alone. I have used Baltic calanoid copepods (crustacean zooplankton) as my research object and studied their growth and stress responses using climate predictions projected for the next century. I have studied both direct temperature and pH effects on copepods, and indirect effects via their food: the changing phytoplankton spring bloom composition and toxic cyanobacterium. The main aims of my thesis were: 1) to find out how warming and acidification combined with a toxic cyanobacterium affect copepod reproductive success (egg production, egg viability, egg hatching success, offspring development) and oxidative balance (antioxidant capacity, oxidative damage), and 2) to reveal the possible food quality effects of spring phytoplankton bloom composition dominated by diatoms or dinoflagellates on reproducing copepods (egg production, egg hatching, RNA:DNA ratio). The two copepod genera used, Acartia sp. and Eurytemora affinis are the dominating mesozooplankton taxa (0.2 – 2 mm) in my study area the Gulf of Finland. The 20°C temperature seems to be within the tolerance limits of Acartia spp., because copepods can adapt to the temperature phenotypically by adjusting their body size. Copepods are also able to tolerate a pH decrease of 0.4 from present values, but the combination of warm water and decreased pH causes problems for them. In my studies, the copepod oxidative balance was negatively influenced by the interaction of these two environmental factors, and egg and nauplii production were lower at 20°C and lower pH, than at 20°C and ambient pH. However, presence of toxic cyanobacterium Nodularia spumigena improved the copepod oxidative balance and helped to resist the environmental stress, in question. In addition, adaptive maternal effects seem to be an important adaptation mechanism in a changing environment, but it depends on the condition of the female copepod and her diet how much she can invest in her offspring. I did not find systematic food quality difference between diatoms and dinoflagellates. There are both good and bad diatom and dinoflagellate species. Instead, the dominating species in the phytoplankton bloom composition has a central role in determining the food quality, although copepods aim at obtaining as a balanced diet as possible by foraging on several species. If the dominating species is of poor quality it can cause stress when ingested, or lead to non-optimal foraging if rejected. My thesis demonstrates that climate change induced water temperature and pH changes can cause problems to Baltic Sea copepod communities. However, their resilience depends substantially on their diet, and therefore the response of phytoplankton to the environmental changes. As copepods are an important link in pelagic food webs, their future success can have far reaching consequences, for example on fish stocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliable detection of intrapartum fetal acidosis is crucial for preventing morbidity. Hypoxia-related changes of fetal heart rate variability (FHRV) are controlled by the autonomic nervous system. Subtle changes in FHRV that cannot be identified by inspection can be detected and quantified by power spectral analysis. Sympathetic activity relates to low-frequency FHRV and parasympathetic activity to both low- and high-frequency FHRV. The aim was to study whether intra partum fetal acidosis can be detected by analyzing spectral powers of FHRV, and whether spectral powers associate with hypoxia-induced changes in the fetal electrocardiogram and with the pH of fetal blood samples taken intrapartum. The FHRV of 817 R-R interval recordings, collected as a part of European multicenter studies, were analyzed. Acidosis was defined as cord pH ≤ 7.05 or scalp pH ≤ 7.20, and metabolic acidosis as cord pH ≤ 7.05 and base deficit ≥ 12 mmol/l. Intrapartum hypoxia increased the spectral powers of FHRV. As fetal acidosis deepened, FHRV decreased: fetuses with significant birth acidosis had, after an initial increase, a drop in spectral powers near delivery, suggesting a breakdown of fetal compensation. Furthermore, a change in excess of 30% of the low-to-high frequency ratio of FHRV was associated with fetal metabolic acidosis. The results suggest that a decrease in the spectral powers of FHRV signals concern for fetal wellbeing. A single measure alone cannot be used to reveal fetal hypoxia since the spectral powers vary widely intra-individually. With technical developments, continuous assessment of intra-individual changes in spectral powers of FHRV might aid in the detection of fetal compromise due to hypoxia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this doctoral thesis, methods to estimate the expected power cycling life of power semiconductor modules based on chip temperature modeling are developed. Frequency converters operate under dynamic loads in most electric drives. The varying loads cause thermal expansion and contraction, which stresses the internal boundaries between the material layers in the power module. Eventually, the stress wears out the semiconductor modules. The wear-out cannot be detected by traditional temperature or current measurements inside the frequency converter. Therefore, it is important to develop a method to predict the end of the converter lifetime. The thesis concentrates on power-cycling-related failures of insulated gate bipolar transistors. Two types of power modules are discussed: a direct bonded copper (DBC) sandwich structure with and without a baseplate. Most common failure mechanisms are reviewed, and methods to improve the power cycling lifetime of the power modules are presented. Power cycling curves are determined for a module with a lead-free solder by accelerated power cycling tests. A lifetime model is selected and the parameters are updated based on the power cycling test results. According to the measurements, the factor of improvement in the power cycling lifetime of modern IGBT power modules is greater than 10 during the last decade. Also, it is noticed that a 10 C increase in the chip temperature cycle amplitude decreases the lifetime by 40%. A thermal model for the chip temperature estimation is developed. The model is based on power loss estimation of the chip from the output current of the frequency converter. The model is verified with a purpose-built test equipment, which allows simultaneous measurement and simulation of the chip temperature with an arbitrary load waveform. The measurement system is shown to be convenient for studying the thermal behavior of the chip. It is found that the thermal model has a 5 C accuracy in the temperature estimation. The temperature cycles that the power semiconductor chip has experienced are counted by the rainflow algorithm. The counted cycles are compared with the experimentally verified power cycling curves to estimate the life consumption based on the mission profile of the drive. The methods are validated by the lifetime estimation of a power module in a direct-driven wind turbine. The estimated lifetime of the IGBT power module in a direct-driven wind turbine is 15 000 years, if the turbine is located in south-eastern Finland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy efficiency is one of the major objectives which should be achieved in order to implement the limited energy resources of the world in a sustainable way. Since radiative heat transfer is the dominant heat transfer mechanism in most of fossil fuel combustion systems, more accurate insight and models may cause improvement in the energy efficiency of the new designed combustion systems. The radiative properties of combustion gases are highly wavelength dependent. Better models for calculating the radiative properties of combustion gases are highly required in the modeling of large scale industrial combustion systems. With detailed knowledge of spectral radiative properties of gases, the modeling of combustion processes in the different applications can be more accurate. In order to propose a new method for effective non gray modeling of radiative heat transfer in combustion systems, different models for the spectral properties of gases including SNBM, EWBM, and WSGGM have been studied in this research. Using this detailed analysis of different approaches, the thesis presents new methods for gray and non gray radiative heat transfer modeling in homogeneous and inhomogeneous H2O–CO2 mixtures at atmospheric pressure. The proposed method is able to support the modeling of a wide range of combustion systems including the oxy-fired combustion scenario. The new methods are based on implementing some pre-obtained correlations for the total emissivity and band absorption coefficient of H2O–CO2 mixtures in different temperatures, gas compositions, and optical path lengths. They can be easily used within any commercial CFD software for radiative heat transfer modeling resulting in more accurate, simple, and fast calculations. The new methods were successfully used in CFD modeling by applying them to industrial scale backpass channel under oxy-fired conditions. The developed approaches are more accurate compared with other methods; moreover, they can provide complete explanation and detailed analysis of the radiation heat transfer in different systems under different combustion conditions. The methods were verified by applying them to some benchmarks, and they showed a good level of accuracy and computational speed compared to other methods. Furthermore, the implementation of the suggested banded approach in CFD software is very easy and straightforward.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lanthanides represent the chemical elements from lanthanum to lutetium. They intrinsically exhibit some very exciting photophysical properties, which can be further enhanced by incorporating the lanthanide ion into organic or inorganic sensitizing structures. A very popular approach is to conjugate the lanthanide ion to an organic chromophore structure forming lanthanide chelates. Another approach, which has quickly gained interest, is to incorporate the lanthanide ions into nanoparticle structures, thus attaining improved specific activity and binding capacity. The lanthanide-based reporters usually express strong luminescence emission, multiple narrow emission lines covering a wide wavelength range, and exceptionally long excited state lifetimes enabling timeresolved detection. Because of these properties, the lanthanide-based reporters have found widespread applications in various fields of life. This study focuses on the field of bioanalytical applications. The aim of the study was to demonstrate the utility of different lanthanide-based reporters in homogeneous Förster resonance energy transfer (FRET)-based bioaffinity assays. Several different model assays were constructed. One was a competitive bioaffinity assay that utilized energy transfer from lanthanide chelate donors to fluorescent protein acceptors. In addition to the conventional FRET phenomenon, a recently discovered non-overlapping FRET (nFRET) phenomenon was demonstrated for the first time for fluorescent proteins. The lack of spectral overlap in the nFRET mechanism provides sensitivity and versatility to energy transfer-based assays. The distance and temperature dependence of these phenomena were further studied in a DNA-hybridization assay. The distance dependence of nFRET deviated from that of FRET, and unlike FRET, nFRET demonstrated clear temperature dependence. Based on these results, a possible excitation mechanism operating in nFRET was proposed. In the study, two enzyme activity assays for caspase-3 were also constructed. One of these was a fluorescence quenching-based enzyme activity assay that utilized novel inorganic particulate reporters called upconverting phosphors (UCPs) as donors. The use of UCPs enabled the construction of a simple, rather inexpensive, and easily automated assay format that had a high throughput rate. The other enzyme activity assay took advantage of another novel reporter class, the lanthanidebinding peptides (LBPs). In this assay, energy was transferred from a LBP to a green fluorescent protein (GFP). Using the LBPs it was possible to avoid the rather laborious, often poorly repeatable, and randomly positioned chemical labeling. In most of the constructed assays, time-resolved detection was used to eliminate the interfering background signal caused by autofluorescence. The improved signal-to-background ratios resulted in increased assay sensitivity, often unobtainable in homogeneous assay formats using conventional organic fluorophores. The anti-Stokes luminescence of the UCPs, however, enabled the elimination of autofluorescence even without time-gating, thus simplifying the instrument setup. Together, the studied reporters and assay formats pave the way for increasingly sensitive, simple, and easily automated bioanalytical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in the electroencephalography (EEG) signal have been used to study the effects of anesthetic agents on the brain function. Several commercial EEG based anesthesia depth monitors have been developed to measure the level of the hypnotic component of anesthesia. Specific anesthetic related changes can be seen in the EEG, but still it remains difficult to determine whether the subject is consciousness or not during anesthesia. EEG reactivity to external stimuli may be seen in unconsciousness subjects, in anesthesia or even in coma. Changes in regional cerebral blood flow, which can be measured with positron emission tomography (PET), can be used as a surrogate for changes in neuronal activity. The aim of this study was to investigate the effects of dexmedetomidine, propofol, sevoflurane and xenon on the EEG and the behavior of two commercial anesthesia depth monitors, Bispectral Index (BIS) and Entropy. Slowly escalating drug concentrations were used with dexmedetomidine, propofol and sevoflurane. EEG reactivity at clinically determined similar level of consciousness was studied and the performance of BIS and Entropy in differentiating consciousness form unconsciousness was evaluated. Changes in brain activity during emergence from dexmedetomidine and propofol induced unconsciousness were studied using PET imaging. Additionally, the effects of normobaric hyperoxia, induced during denitrogenation prior to xenon anesthesia induction, on the EEG were studied. Dexmedetomidine and propofol caused increases in the low frequency, high amplitude (delta 0.5-4 Hz and theta 4.1-8 Hz) EEG activity during stepwise increased drug concentrations from the awake state to unconsciousness. With sevoflurane, an increase in delta activity was also seen, and an increase in alpha- slow beta (8.1-15 Hz) band power was seen in both propofol and sevoflurane. EEG reactivity to a verbal command in the unconsciousness state was best retained with propofol, and almost disappeared with sevoflurane. The ability of BIS and Entropy to differentiate consciousness from unconsciousness was poor. At the emergence from dexmedetomidine and propofol induced unconsciousness, activation was detected in deep brain structures, but not within the cortex. In xenon anesthesia, EEG band powers increased in delta, theta and alpha (8-12Hz) frequencies. In steady state xenon anesthesia, BIS and Entropy indices were low and these monitors seemed to work well in xenon anesthesia. Normobaric hyperoxia alone did not cause changes in the EEG. All of these results are based on studies in healthy volunteers and their application to clinical practice should be considered carefully.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model for predicting temperature evolution for automatic controling systems in manufacturing processes requiring the coiling of bars in the transfer table is presented. Although the method is of a general nature, the presentation in this work refers to the manufacturing of steel plates in hot rolling mills. The predicting strategy is based on a mathematical model of the evolution of temperature in a coiling and uncoiling bar and is presented in the form of a parabolic partial differential equation for a shape changing domain. The mathematical model is solved numerically by a space discretization via geometrically adaptive finite elements which accomodate the change in shape of the domain, using a computationally novel treatment of the resulting thermal contact problem due to coiling. Time is discretized according to a Crank-Nicolson scheme. Since the actual physical process takes less time than the time required by the process controlling computer to solve the full mathematical model, a special predictive device was developed, in the form of a set of least squares polynomials, based on the off-line numerical solution of the mathematical model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During vehicle deceleration due to braking there is friction between the lining surface and the brake drum or disc. In this process the kinetic energy of vehicle is turned into thermal energy that raises temperature of the components. The heating of the brake system in the course of braking is a great problem, because besides damaging the system, it may also affect the wheel and tire, which can cause accidents. In search of the best configuration that considers the true conditions of use, without passing the safety limits, models and formulations are presented with respect to the brake system, considering different braking conditions and kinds of brakes. Some modeling was analyzed using well-known methods. The flat plate model considering energy conservation was applied to a bus, using for this a computer program. The vehicle is simulated to undergo an emergency braking, considering the change of temperature on the lining-drum. The results include deceleration, braking efficiency, wheel resistance, normal reaction on the tires and the coefficient of adhesion. Some of the results were compared with dynamometer tests made by FRAS-LE and others were compared with track tests made by Mercedes-Benz. The convergence between the results and the tests is sufficient to validate the mathematical model. The computer program makes it possible to simulate the brake system performance in the vehicle. It assists the designer during the development phase and reduces track tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experimental technique used for detection of subcooled boiling through analysis of the fluctuation contained in pressure transducer signals is presented. This work was partly conducted at the Institut für Kerntechnik und zertörungsfreie Prüfverfahren von Hannover (IKPH, Germany) in a thermal-hydraulic circuit with one electrically heated rod with annular geometry test section. Piezoresistive pressure sensors are used for onset of nucleate boiling (ONB) and onset of fully developed boiling (OFDB) detection using spectral analysis/ signal correlation techniques. Experimental results are interpreted by phenomenological analysis of these two points and compared with existing correlation. The results allow us to conclude that this technique is adequate for the detection and monitoring of the ONB and OFDB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Textile manufacture occupies a prominent place in the national economy. Because of its importance researches have been made on the development of new materials, equipment and methods used in the production process. The cutting of textiles starts in the basic stage, to be followed by the process of the making of clothes and other articles. In the hot cutting of fabric, one of the variables of great importance in the control of the process is the contact temperature between the tool and the fabric. This work presents a technique for the measurement of the temperature based on the processing of infrared images. With this purpose, it was developed a system which is composed of an infrared camera, a framegrabber PC board and a software which analyses the punctual temperature in the cut area enabling the operator to achieve the necessary control of other variables involved in the process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Työssä käydään läpi tukivektorikoneiden teoreettista pohjaa sekä tutkitaan eri parametrien vaikutusta spektridatan luokitteluun.