834 resultados para spatiotemporal contaminant trends
Resumo:
Temperature and precipitation are major forcing factors influencing grapevine phenology and yield, as well as wine quality. Bioclimatic indices describing the suitability of a particular region for wine production are a commonly used tool for viticultural zoning. For this research these indices were computed for Europe by using the E-OBS gridded daily temperature and precipitation data set for the period from 1950 to 2009. Results showed strong regional contrasts based on the different index patterns and reproduced the wide diversity of local conditions that largely explain the quality and diversity of grapevines being grown across Europe. Owing to the strong inter-annual variability in the indices, a trend analysis and a principal component analysis were applied together with an assessment of their mean patterns. Significant trends were identified in the Winkler and Huglin indices, particularly for southwestern Europe. Four statistically significant orthogonal modes of variability were isolated for the Huglin index (HI), jointly representing 82% of the total variance in Europe. The leading mode was largely dominant (48% of variance) and mainly reflected the observed historical long-term changes. The other 3 modes corresponded to regional dipoles within Europe. Despite the relevance of local and regional climatic characteristics to grapevines, it was demonstrated via canonical correlation analysis that the observed inter-annual variability of the HI was strongly controlled by the large-scale atmospheric circulation during the growing season (April to September).
Resumo:
A climatology of cyclones with a focus on their relation to wind storm tracks in the Mediterranean region (MR) is presented. Trends in the frequency of cyclones and wind storms, as well as variations associated with the North Atlantic Oscillation (NAO), the East Atlantic/West Russian (EAWR) and the Scandinavian variability pattern (SCAND) are discussed. The study is based on the ERA40 reanalysis dataset. Wind storm tracks are identified by tracking clusters of adjacent grid boxes characterised by extremely high local wind speeds. The wind track is assigned to a cyclone track independently identified with an objective scheme. Areas with high wind activity – quantified by extreme wind tracks – are typically located south of the Golf of Genoa, south of Cyprus, southeast of Sicily and west of the Iberian Peninsula. About 69% of the wind storms are caused by cyclones located in the Mediterranean region, while the remaining 31% can be attributed to North Atlantic or Northern European cyclones. The North Atlantic Oscillation, the East Atlantic/West Russian pattern and the Scandinavian pattern all influence the amount and spatial distribution of wind inducing cyclones and wind events in the MR. The strongest signals exist for the NAO and the EAWR pattern, which are both associated with an increase in the number of organised strong wind events in the eastern MR during their positive phase. On the other hand, the storm numbers decrease over the western MR for the positive phase of the NAO and over the central MR during the positive phase of the EAWR pattern. The positive phase of the Scandinavian pattern is associated with a decrease in the number of winter wind storms over most of the MR. A third of the trends in the number of wind storms and wind producing cyclones during the winter season of the ERA40 period may be attributed to the variability of the North Atlantic Oscillation.
Resumo:
Pollination is an essential process in the sexual reproduction of seed plants and a key ecosystem service to human welfare. Animal pollinators decline as a consequence of five major global change pressures: climate change, landscape alteration, agricultural intensification, non-native species, and spread of pathogens. These pressures, which differ in their biotic or abiotic nature and their spatiotemporal scales, can interact in nonadditive ways (synergistically or antagonistically), but are rarely considered together in studies of pollinator and/or pollination decline. Management actions aimed at buffering the impacts of a particular pressure could thereby prove ineffective if another pressure is present. Here, we focus on empirical evidence of the combined effects of global change pressures on pollination, highlighting gaps in current knowledge and future research needs.
Resumo:
Detailed understanding of the haemodynamic changes that underlie non-invasive neuroimaging techniques such as blood oxygen level dependent functional magnetic resonance imaging is essential if we are to continue to extend the use of these methods for understanding brain function and dysfunction. The use of animal and in particular rodent research models has been central to these endeavours as they allow in-vivo experimental techniques that provide measurements of the haemodynamic response function at high temporal and spatial resolution. A limitation of most of this research is the use of anaesthetic agents which may disrupt or mask important features of neurovascular coupling or the haemodynamic response function. In this study we therefore measured spatiotemporal cortical haemodynamic responses to somatosensory stimulation in awake rats using optical imaging spectroscopy. Trained, restrained animals received non-noxious stimulation of the whisker pad via chronically implanted stimulating microwires whilst optical recordings were made from the contralateral somatosensory cortex through a thin cranial window. The responses we measure from un-anaesthetised animals are substantially different from those reported in previous studies which have used anaesthetised animals. These differences include biphasic response regions (initial increases in blood volume and oxygenation followed by subsequent decreases) as well as oscillations in the response time series of awake animals. These haemodynamic response features do not reflect concomitant changes in the underlying neuronal activity and therefore reflect neurovascular or cerebrovascular processes. These hitherto unreported hyperemic response dynamics may have important implications for the use of anaesthetised animal models for research into the haemodynamic response function.
Resumo:
NO2 measurements during 1990–2007, obtained from a zenith-sky spectrometer in the Antarctic, are analysed to determine the long-term changes in NO2. An atmospheric photochemical box model and a radiative transfer model are used to improve the accuracy of determination of the vertical columns from the slant column measurements, and to deduce the amount of NOy from NO2. We find that the NO2 and NOy columns in midsummer have large inter-annual variability superimposed on a broad maximum in 2000, with little or no overall trend over the full time period. These changes are robust to a variety of alternative settings when determining vertical columns from slant columns or determining NOy from NO2. They may signify similar changes in speed of the Brewer-Dobson circulation but with opposite sign, i.e. a broad minimum around 2000. Multiple regressions show significant correlation with solar and quasi-biennial-oscillation indices, and weak correlation with El Nino, but no significant overall trend, corresponding to an increase in Brewer-Dobson circulation of 1.4±3.5%/decade. There remains an unexplained cycle of amplitude and period at least 15% and 17 years, with minimum speed in about 2000.
Resumo:
We qualitatively describe the condition of communally managed rangelands in the Transkei, South Africa, using GIS and high resolution near-infrared imagery. Using livestock census data from 28 magisterial districts in the Transkei, we explored the trends in livestock biomass from 1923–1998. The area had been subjected to intensive herbivory by domestic livestock during that period, and the high livestock biomass had been blamed for the perceived degradation or ‘overgrazing’ of the region. Our assessment used the concept rain-use efficiency (RUE) (kg dry matter ha–1 mm–1) to determine whether there is evidence of change in the efficiency of the system to produce domestic livestock. We calculated RUE from annual livestock numbers and the mean annual rainfall for each district. We found no evidence of a decline in rain-use efficiency between the two assessment periods (1923–1944, 1945–1998). There was evidence of a shift in the ratio of sheep to goats between 1923 and 1998, with goat numbers increasing (greater than twofold) relative to sheep in eight districts. This trend may be associated with changes in the structure of vegetation. We conclude that this region is not showing evidence of system run down that affects domestic livestock production.
Resumo:
Observations at the Mauna Loa Observatory, Hawaii, established the systematic increase of anthropogenic CO2 in the atmosphere. For the same reasons that this site provides excellent globally averaged CO2 data, it may provide temperature data with global significance. Here, we examine hourly temperature records, averaged annually for 1977–2006, to determine linear trends as a function of time of day. For night-time data (22:00 to 06:00 LST (local standard time)) there is a near-uniform warming of 0.040 °C yr−1. During the day, the linear trend shows a slight cooling of −0.014 °C yr−1 at 12:00 LST (noon). Overall, at Mauna Loa Observatory, there is a mean warming trend of 0.021 °C yr−1. The dominance of night-time warming results in a relatively large annual decrease in the diurnal temperature range (DTR) of −0.050 °C yr−1 over the period 1977–2006. These trends are consistent with the observed increases in the concentrations of CO2 and its role as a greenhouse gas (demonstrated here by first-order radiative forcing calculations), and indicate the possible relevance of the Mauna Loa temperature measurements to global warming.
Resumo:
In this study, change in rainfall, temperature and river discharge are analysed over the last three decades in Central Vietnam. Trends and rainfall indices are evaluated using non-parametric tests at different temporal levels. To overcome the sparse locally available network, the high resolution APHRODITE gridded dataset is used in addition to the existing rain gauges. Finally, existing linkages between discharge changes and trends in rainfall and temperature are explored. Results are indicative of an intensification of rainfall (+15%/decade), with more extreme and longer events. A significant increase in winter rainfall and a decrease in consecutive dry days provides strong evidence for a lengthening wet season in Central Vietnam. In addition, trends based on APHRODITE suggest a strong orographic signal in winter and annual trends. These results underline the local variability in the impacts of climatic change at the global scale. Consequently, it is important that change detection investigations are conducted at the local scale. A very weak signal is detected in the trend of minimum temperature (+0.2°C/decade). River discharge trends show an increase in mean discharge (31 to 35%/decade) over the last decades. Between 54 and 74% of this increase is explained by the increase in precipitation. The maximum discharge also responds significantly to precipitation changes leading to a lengthened wet season and an increase in extreme rainfall events. Such trends can be linked with a likely increase in floods in Central Vietnam, which is important for future adaptation planning and management and flood preparedness in the region. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Data on electricity consumption patterns relating to different end uses in domestic houses in Botswana is virtually non-existent, despite the fact that the total electricity consumption patterns are available. This can be attributed to the lack of measured and quantified data and in other instances the lack of modern technology to perform such investigations. This paper presents findings from initial studies that are envisaged to bridge the gap. Electricity consumption patterns of 73 domestic households across three cities have been studied. This was carried out through a questionnaire survey, calculated national metering data and electricity measurements. All together nine appliance groups were identified. The results showed the mean electricity consumption for the households considering the calculated consumption from bills and the survey to be t = 4.23; p < 0.000067, two-tailed. The findings of this paper focus on a relatively small sample size (73). It would therefore not be wise to draw sweeping conclusions from the analysis or to make statements that would be aimed at influencing policies. However, the results presented forms a formidable base for further research, which is currently on going.
Resumo:
This paper investigates whether survey forecasters are able to make more accurate forecasts than simply supposing that the future values of the variable will move monotonically to the long-run expectation. We consider the forecasts individually, and the consensus forecasts. Consensus survey forecasts are able to do so to varying degrees depending on the variable, but this ability is largely limited to forecasts of the current quarter.
Resumo:
Stratospheric water vapour is a powerful greenhouse gas. The longest available record from balloon observations over Boulder, Colorado, USA shows increases in stratospheric water vapour concentrations that cannot be fully explained by observed changes in the main drivers, tropical tropopause temperatures and methane. Satellite observations could help resolve the issue, but constructing a reliable long-term data record from individual short satellite records is challenging. Here we present an approach to merge satellite data sets with the help of a chemistry–climate model nudged to observed meteorology. We use the models’ water vapour as a transfer function between data sets that overcomes issues arising from instrument drift and short overlap periods. In the lower stratosphere, our water vapour record extends back to 1988 and water vapour concentrations largely follow tropical tropopause temperatures. Lower and mid-stratospheric long-term trends are negative, and the trends from Boulder are shown not to be globally representative. In the upper stratosphere, our record extends back to 1986 and shows positive long-term trends. The altitudinal differences in the trends are explained by methane oxidation together with a strengthened lower-stratospheric and a weakened upper stratospheric circulation inferred by this analysis. Our results call into question previous estimates of surface radiative forcing based on presumed global long-term increases in water vapour concentrations in the lower stratosphere.
Resumo:
Data on electricity consumption patterns relating to different end uses in domestic houses in Botswana is virtually non-existent, despite the fact that the total electricity consumption patterns are available. This can be attributed to the lack of measured and quantified data and in other instances the lack of modern technology to perform such investigations. This paper presents findings from initial studies that are envisaged to bridge the gap. Electricity consumption patterns of 275 domestic households in Gaborone (the capital city of Botswana) have been studied. This was carried out through a questionnaire survey and electricity measurements. Households were categorized based on the number of people occupying the house. From the study, it was evident that the number of people influences the amount of energy a household use although this cannot be treated as an independent factor when assessing energy use. The study also indicated that heating, cooling and domestic hot water (DHW) account for over 30% of energy used in the home. This is worth considering in energy consumption reduction measures. Due to a small sample size, it would not be wise to draw sweeping conclusions from the analysis of this paper or to make statements that would be aimed at influencing policies. However, the results presented forms a formidable base for further research, which is currently on going.