860 resultados para spatio-temporal reasoning
Resumo:
Purpose
– The purpose of this paper is to explore and explain the change process in Northern Ireland policing through an analysis of temporally bracketed change phases and key change delivery themes ranging from 1996 to 2012.
Design/methodology/approach
– The research approach adopted is process based, longitudinal and multi-method, utilising “temporal bracketing” to determine phases of change and conjunctural reasoning to unravel the systematic factors interacting over time, within the case.
Findings
– The paper identifies and temporally brackets four phases of change: “Tipping point”; “Implementation, Symbolic Modification and Resistance”; “Power Assisted Steering”; and “A Return to Turbulence”, identifies four themes that emerge from RUC-PSNI experience: the role of adaptive leadership; pace and sequencing of change implementation; sufficient resourcing; and the impact of external agents acting as boundary spanners, and comments on the prominence of these themes through the phases. The paper goes on to reflect upon how these phases and themes inform our understanding of organisational change within policing organisations generally and within politically pressurised transition processes.
Originality/value
– The contribution of the paper lies in the documentation of an almost unique organisational case in an environmentally forced change process. In this it contains lessons for other organisations facing similar, if less extreme challenges and presents an example of intense change analysed longitudinally.
Resumo:
In many CCTV and sensor network based intelligent surveillance systems, a number of attributes or criteria are used to individually evaluate the degree of potential threat of a suspect. The outcomes for these attributes are in general from analytical algorithms where data are often pervaded with uncertainty and incompleteness. As a result, such individual threat evaluations are often inconsistent, and individual evaluations can change as time elapses. Therefore, integrating heterogeneous threat evaluations with temporal influence to obtain a better overall evaluation is a challenging issue. So far, this issue has rarely be considered by existing event reasoning frameworks under uncertainty in sensor network based surveillance. In this paper, we first propose a weighted aggregation operator based on a set of principles that constraints the fusion of individual threat evaluations. Then, we propose a method to integrate the temporal influence on threat evaluation changes. Finally, we demonstrate the usefulness of our system with a decision support event modeling framework using an airport security surveillance scenario.
Resumo:
Dans ce mémoire, les armes à feu impliquées dans la commission de crimes sont étudiées à partir de leur mobilité spatio-temporelle. Afin d’opérationnaliser cette mobilité, deux mesures spécifiques ont été créées, soit le « temps-au-recouvrement » et la « distance-au-recouvrement ». Ces mesures permettent d’analyser les répercussions des armes à feu en circulation illégale sur la formation du marché illégal dans le territoire québécois. Des analyses descriptives ont d’abord été effectuées dans cette étude à partir de trois segments de la banque de données québécoise des armes à feu recouvrées : la banque complète, les armes à feu impliquées dans la commission de crimes et les armes volées. Le sous-groupe de 501 d’armes à feu volées est le seul qui a été soumis à des analyses de régressions multiples sur la mobilité puisque ces armes sont les seules permettant d’avoir plus d’informations sur leur mouvement antérieur au recouvrement par les autorités policières. Les résultats montrent qu’il y a une mobilité spatio-temporelle plus importante chez les armes de poing, celles impliquées dans les crimes de marché, les armes non-enregistrées ainsi que celles sans restriction. Afin de mieux comprendre la dynamique des armes volées, le statut de l’enregistrement s’avère la variable la plus importante puisqu’elle permet de déterminer à quel point ces armes vont être enracinées dans le marché illégal au Québec. Effectivement, les armes volées non-enregistrées sont plus susceptibles de converger vers les marchés criminels, ce qui augmente considérablement leur « durée » de vie et leur mobilité dans la province.
Resumo:
First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments including the guarded fragment with equality. In this paper, we specialise the monodic resolution method to the guarded monodic fragment with equality and first-order temporal logic over expanding domains. We introduce novel resolution calculi that can be applied to formulae in the normal form associated with the clausal resolution method, and state correctness and completeness results.
Resumo:
First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments. In this paper, we develop a clausal resolution method for the monodic fragment of first-order temporal logic over expanding domains. We first define a normal form for monodic formulae and then introduce novel resolution calculi that can be applied to formulae in this normal form. We state correctness and completeness results for the method. We illustrate the method on a comprehensive example. The method is based on classical first-order resolution and can, thus, be efficiently implemented.
Resumo:
In this paper, we show how the clausal temporal resolution technique developed for temporal logic provides an effective method for searching for invariants, and so is suitable for mechanising a wide class of temporal problems. We demonstrate that this scheme of searching for invariants can be also applied to a class of multi-predicate induction problems represented by mutually recursive definitions. Completeness of the approach, examples of the application of the scheme, and overview of the implementation are described.
Resumo:
The clausal resolution method for propositional linear-time temporal logic is well known and provides the basis for a number of temporal provers. The method is based on an intuitive clausal form, called SNF, comprising three main clause types and a small number of resolution rules. In this paper, we show how the normal form can be radically simplified, and consequently, how a simplified clausal resolutioin method can be defined for this impoprtant variety of logics.
Resumo:
Sustainable computer systems require some flexibility to adapt to environmental unpredictable changes. A solution lies in autonomous software agents which can adapt autonomously to their environments. Though autonomy allows agents to decide which behavior to adopt, a disadvantage is a lack of control, and as a side effect even untrustworthiness: we want to keep some control over such autonomous agents. How to control autonomous agents while respecting their autonomy? A solution is to regulate agents’ behavior by norms. The normative paradigm makes it possible to control autonomous agents while respecting their autonomy, limiting untrustworthiness and augmenting system compliance. It can also facilitate the design of the system, for example, by regulating the coordination among agents. However, an autonomous agent will follow norms or violate them in some conditions. What are the conditions in which a norm is binding upon an agent? While autonomy is regarded as the driving force behind the normative paradigm, cognitive agents provide a basis for modeling the bindingness of norms. In order to cope with the complexity of the modeling of cognitive agents and normative bindingness, we adopt an intentional stance. Since agents are embedded into a dynamic environment, things may not pass at the same instant. Accordingly, our cognitive model is extended to account for some temporal aspects. Special attention is given to the temporal peculiarities of the legal domain such as, among others, the time in force and the time in efficacy of provisions. Some types of normative modifications are also discussed in the framework. It is noteworthy that our temporal account of legal reasoning is integrated to our commonsense temporal account of cognition. As our intention is to build sustainable reasoning systems running unpredictable environment, we adopt a declarative representation of knowledge. A declarative representation of norms will make it easier to update their system representation, thus facilitating system maintenance; and to improve system transparency, thus easing system governance. Since agents are bounded and are embedded into unpredictable environments, and since conflicts may appear amongst mental states and norms, agent reasoning has to be defeasible, i.e. new pieces of information can invalidate formerly derivable conclusions. In this dissertation, our model is formalized into a non-monotonic logic, namely into a temporal modal defeasible logic, in order to account for the interactions between normative systems and software cognitive agents.
Resumo:
The extension to new languages is a well known bottleneck for rule-based systems. Considerable human effort, which typically consists in re-writing from scratch huge amounts of rules, is in fact required to transfer the knowledge available to the system from one language to a new one. Provided sufficient annotated data, machine learning algorithms allow to minimize the costs of such knowledge transfer but, up to date, proved to be ineffective for some specific tasks. Among these, the recognition and normalization of temporal expressions still remains out of their reach. Focusing on this task, and still adhering to the rule-based framework, this paper presents a bunch of experiments on the automatic porting to Italian of a system originally developed for Spanish. Different automatic rule translation strategies are evaluated and discussed, providing a comprehensive overview of the challenge.
Resumo:
Contradiction is a cornerstone of human rationality, essential for everyday life and communication. We investigated electroencephalographic (EEG) and functional magnetic resonance imaging (fMRI) in separate recording sessions during contradictory judgments, using a logical structure based on categorical propositions of the Aristotelian Square of Opposition (ASoO). The use of ASoO propositions, while controlling for potential linguistic or semantic confounds, enabled us to observe the spatial temporal unfolding of this contradictory reasoning. The processing started with the inversion of the logical operators corresponding to right middle frontal gyrus (rMFG-BA11) activation, followed by identification of contradictory statement associated with in the right inferior frontal gyrus (rIFG-BA47) activation. Right medial frontal gyrus (rMeFG, BA10) and anterior cingulate cortex (ACC, BA32) contributed to the later stages of process. We observed a correlation between the delayed latency of rBA11 response and the reaction time delay during inductive vs. deductive reasoning. This supports the notion that rBA11 is crucial for manipulating the logical operators. Slower processing time and stronger brain responses for inductive logic suggested that examples are easier to process than general principles and are more likely to simplify communication. © 2014 Porcaro et al.
Resumo:
This paper presents a new formalism for reasoning about change over time. The formalism derives a clean separation between the notion of states and situations. It allows more flexible temporal causal relationships than do other formalisms for reasoning about causal change, such as the situation calculus and the event calculus. It includes effects that start during, immediately after, or some time after their causes, and which end before, simultaneously with, or after their causes. A formal distinction between actions, action-types and events is proposed, which allows the expression of common-sense causal laws at high level. It is shown how these laws can be used to deduce state change over time at low level, when events occur under certain preconditions hold. Two problems that beset most interval-based temporal systems, i.e., the so-called dividing instant problem and intermingling problem, are absent from the formalism.