972 resultados para spatial metrics
Resumo:
Selecting a stimulus as the target for a goal-directed movement involves inhibiting other competing possible responses. Inhibition has generally proved hard to study behaviorally, because it results in no measurable output. The effect of distractors on the shape of oculomotor and manual trajectories provide evidence of such inhibition. Individual saccades may deviate initially either towards, or away from, a competing distractor - the direction and extent of this deviation depends upon saccade latency, target predictability and the target to distractor separation. The experiment reported here used these effects to show how inhibition of distractor locations develops over time. Distractors could be presented at various distances from unpredictable and predictable targets in two separate experiments. The deviation of saccade trajectories was compared between trials with and without distractors. Inhibition was measured by saccade trajectory deviation. Inhibition was found to increase as the distractor distance from target decreased but was found to increase with saccade latency at all distractor distances (albeit to different peaks). Surprisingly, no differences were found between unpredictable and predictable targets perhaps because our saccade latencies were generally long (similar to 260-280 ms.). We conclude that oculomotor inhibition of saccades to possible target objects involves the same mechanisms for all distractor distances and target types. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The spatial and temporal effect of distractor related inhibition on stimulus elicited (reflexive) and goal driven (voluntary) saccades, was examined using saccade trajectory deviations as a measure. Subjects made voluntary and reflexive saccades to a target location on the vertical midline, while the distance of a distractor from the target was systematically manipulated. The trajectory curvature of both voluntary and reflexive saccades was found to be subject to individual differences. Saccade curvature was found to decrease monotonically with increasing distractor distance from target for some subjects while for others no reduction in curvature or even an increase was found. These results could not be explained by latency differences or landing position effects. The different patterns of distractor effects on saccade trajectories suggest the additional influence of a non-spatial inhibitory mechanism. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Static movement aftereffects (MAEs) were measured after adaptation to vertical square-wave luminance gratings drifting horizontally within a central window in a surrounding stationary vertical grating. The relationship between the stationary test grating and the surround was manipulated by varying the alignment of the stationary stripes in the window and those in the surround, and the type of outline separating the window and the surround [no outline, black outline (invisible on black stripes), and red outline (visible throughout its length)]. Offsetting the stripes in the window significantly increased both the duration and ratings of the strength of MAEs. Manipulating the outline had no significant effect on either measure of MAE strength. In a second experiment, in which the stationary test fields alone were presented, participants judged how segregated the test field appeared from its surround. In contrast to the MAE measures, outline as well as offset contributed to judged segregation. In a third experiment, in which test-stripe offset wits systematically manipulated, segregation ratings rose with offset. However, MAE strength was greater at medium than at either small or large (180 degrees phase shift) offsets. The effects of these manipulations on the MAE are interpreted in terms of a spatial mechanism which integrates motion signals along collinear contours of the test field and surround, and so causes a reduction of motion contrast at the edges of the test field.
Resumo:
Individuals with Williams syndrome (WS) display poor visuo-spatial cognition relative to verbal abilities. Furthermore, whilst perceptual abilities are delayed, visuo-spatial construction abilities are comparatively even weaker, and are characterised by a local bias. We investigated whether his differentiation in visuo-spatial abilities can be explained by a deficit in coding spatial location in WS. This can be measured by assessing participants' understanding of the spatial relations between objects within a visual scene. Coordinate and categorical spatial relations were investigated independently in four participant groups: 21 individuals with WS; 21 typically developing (TD) children matched for non-verbal ability; 20 typically developing controls of a lower non-verbal ability; and 21 adults. A third task measured understanding of visual colour relations. Results indicated first, that the comprehension of categorical and coordinate spatial relations is equally poor in WS. Second, that the comprehension of visual relations is also at an equivalent level to spatial relational understanding in this population. These results can explain the difference in performance on visuo-spatial perception and construction tasks in WS. In addition, both the WS and control groups displayed response biases in the spatial tasks. However, the direction of bias differed across the groups. This finding is explored in relation to current theories of spatial location coding. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The perceived displacement of motion-defined contours in peripheral vision was examined in four experiments. In Experiment 1, in line with Ramachandran and Anstis' finding [Ramachandran, V. S., & Anstis, S. M. (1990). Illusory displacement of equiluminous kinetic edges. Perception, 19, 611-616], the border between a field of drifting dots and a static dot pattern was apparently displaced in the same direction as the movement of the dots. When a uniform dark area was substituted for the static dots, a similar displacement was found, but this was smaller and statistically insignificant. In Experiment 2, the border between two fields of dots moving in opposite directions was displaced in the direction of motion of the dots in the more eccentric field, so that the location of a boundary defined by a diverging pattern is perceived as more eccentric, and that defined by a converging as less eccentric. Two explanations for this effect (that the displacement reflects a greater weight given to the more eccentric motion, or that the region containing stronger centripetal motion components expands perceptually into that containing centrifugal motion) were tested in Experiment 3, by varying the velocity of the more eccentric region. The results favoured the explanation based on the expansion of an area in centripetal motion. Experiment 4 showed that the difference in perceived location was unlikely to be due to differences in the discriminability of contours in diverging and converging pattems, and confirmed that this effect is due to a difference between centripetal and centrifugal motion rather than motion components in other directions. Our result provides new evidence for a bias towards centripetal motion in human vision, and suggests that the direction of motion-induced displacement of edges is not always in the direction of an adjacent moving pattern. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The nature of the spatial representations that underlie simple visually guided actions early in life was investigated in toddlers with Williams syndrome (WS), Down syndrome (DS), and healthy chronological age- and mental age-matched controls, through the use of a "double-step" saccade paradigm. The experiment tested the hypothesis that, compared to typically developing infants and toddlers, and toddlers with DS, those with WS display a deficit in using spatial representations to guide actions. Levels of sustained attention were also measured within these groups, to establish whether differences in levels of engagement influenced performance on the double-step saccade task. The results showed that toddlers with WS were unable to combine extra-retinal information with retinal information to the same extent as the other groups, and displayed evidence of other deficits in saccade planning, suggesting a greater reliance on sub-cortical mechanisms than the other populations. Results also indicated that their exploration of the visual environment is less developed. The sustained attention task revealed shorter and fewer periods of sustained attention in toddlers with DS, but not those with WS, suggesting that WS performance on the double-step saccade task is not explained by poorer engagement. The findings are also discussed in relation to a possible attention disengagement deficit in WS toddlers. Our study highlights the importance of studying genetic disorders early in development. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The transport sector emits a wide variety of gases and aerosols, with distinctly different characteristics which influence climate directly and indirectly via chemical and physical processes. Tools that allow these emissions to be placed on some kind of common scale in terms of their impact on climate have a number of possible uses such as: in agreements and emission trading schemes; when considering potential trade-offs between changes in emissions resulting from technological or operational developments; and/or for comparing the impact of different environmental impacts of transport activities. Many of the non-CO2 emissions from the transport sector are short-lived substances, not currently covered by the Kyoto Protocol. There are formidable difficulties in developing metrics and these are particularly acute for such short-lived species. One difficulty concerns the choice of an appropriate structure for the metric (which may depend on, for example, the design of any climate policy it is intended to serve) and the associated value judgements on the appropriate time periods to consider; these choices affect the perception of the relative importance of short- and long-lived species. A second difficulty is the quantification of input parameters (due to underlying uncertainty in atmospheric processes). In addition, for some transport-related emissions, the values of metrics (unlike the gases included in the Kyoto Protocol) depend on where and when the emissions are introduced into the atmosphere – both the regional distribution and, for aircraft, the distribution as a function of altitude, are important. In this assessment of such metrics, we present Global Warming Potentials (GWPs) as these have traditionally been used in the implementation of climate policy. We also present Global Temperature Change Potentials (GTPs) as an alternative metric, as this, or a similar metric may be more appropriate for use in some circumstances. We use radiative forcings and lifetimes from the literature to derive GWPs and GTPs for the main transport-related emissions, and discuss the uncertainties in these estimates. We find large variations in metric (GWP and GTP) values for NOx, mainly due to the dependence on location of emissions but also because of inter-model differences and differences in experimental design. For aerosols we give only global-mean values due to an inconsistent picture amongst available studies regarding regional dependence. The uncertainty in the presented metric values reflects the current state of understanding; the ranking of the various components with respect to our confidence in the given metric values is also given. While the focus is mostly on metrics for comparing the climate impact of emissions, many of the issues are equally relevant for stratospheric ozone depletion metrics, which are also discussed.
Resumo:
This paper derives some exact power properties of tests for spatial autocorrelation in the context of a linear regression model. In particular, we characterize the circumstances in which the power vanishes as the autocorrelation increases, thus extending the work of Krämer (2005). More generally, the analysis in the paper sheds new light on how the power of tests for spatial autocorrelation is affected by the matrix of regressors and by the spatial structure. We mainly focus on the problem of residual spatial autocorrelation, in which case it is appropriate to restrict attention to the class of invariant tests, but we also consider the case when the autocorrelation is due to the presence of a spatially lagged dependent variable among the regressors. A numerical study aimed at assessing the practical relevance of the theoretical results is included