991 resultados para spatial error
Resumo:
ABSTRACTTo evaluate the effect of planting date and spatial pattern on common bean yield under weed-free and weed-infested conditions, an experiment was conducted in Kelachay, Northern Iran, in 2013. The experimental design was a randomized complete block in a factorial arrangement with three replicates. Factors were planting date (10 August and 20 August), spatial pattern (square and rectangular planting pattern, with a planting distance of 30 x 30 cm and 45 x 20 cm, respectively), and weed management regime (weed-free and weedy conditions, weeded and not weeded throughout the growing season, respectively). Results showed that the main effect of planting date was significant only for pod number per plant and seed number per pod. At the same time, pod number per plant, seed number per pod, pod length, and grain yield were influenced significantly by spatial pattern. Results of ANOVA have also indicated that all traits, except pod length, were influenced significantly by weed-management regimes. Moreover, effect of planting date and spatial pattern were nonsignificant for weed dry weight. Mean comparison has expressed a significant increment in seed yield for square planting arrangement (1,055 kg ha-1) over rectangular (971 kg ha-1). Weeding has also presented an overall 12% and 8% improvement in grain and pod yield over control (weedy check), respectively. Based on the results of this study, weed control, as well as square planting pattern, are recommended for obtaining the highest seed yield in common bean.
Resumo:
Temporal and spatial variations in species composition and vertical distribution of macroalgal communities growing on mangrove trees were analyzed bimonthly in the Ilha do Cardoso State Park, São Paulo state (25°03'S and 47°55'W), Southeastern Brazil. The macroalgal communities from mangroves of Perequê and Sítio Grande rivers comprised 10 and 18 taxa respectively. Bostrychia radicans (Mont.) Mont. and B. calliptera (Mont.) Mont. were the predominant taxa, present almost throughout the year and in all the sites studied. The species composition of macroalgal communities from both mangroves presented temporal and spatial variations related to environmental factors. The highest number of taxa was observed during colder, drier months, coinciding with the highest means of high water neap and short periods of continuous emersion (April to August). Some mangrove algae such as B. calliptera, Rhizoclonium spp., Caloglossa spp., and Boodleopsis pusilla (Collins) W. Taylor, Joly et Bernatowicz showed a high degree of tolerance to desiccation, being able to tolerate continuous emersion up to six days. The spatial variations in species composition were related to light, as observed in Catenella caespitosa (Withering) L. Irvine, which occurred in well-lit sites. No pattern of vertical zonation was observed, since Rhizoclonium spp., B. radicans, and B. calliptera occur over the entire vertical range. Variations in the range of vertical distribution of macroalgae of Perequê mangrove were mainly related to the variations in the tidal levels (mean high water neap and/or mean high water spring) while those observed in Sítio Grande mangrove were related to salinity variations, except for B. calliptera and Caloglossa spp. related to tidal levels and high irradiance, respectively.
Resumo:
A spatial autocorrelation study of enzyme loci detected by starch gel electrophoresis was performed to verify the occurrence of spatial genetic structure within two natural populations of Machaerium villosum Vog. The sampled populations were termed "Antropic Model (MA)" and "Natural Model (MN)" and they are situated in Campininha Farm areas, at Moji-Guaçu municipality, 22°10'43''-22°18'19'' S and 47°8'5"-47°11'34" W, in the state of São Paulo. Ten polymorphic loci in the MA population and nine polymorphic loci in the MN population were assessed by Moran's I autocorrelation statistic. No spatial autocorrelation was detected among individuals within sampled populations. Results are in line with other studies in woody species from tropical rain forest.
Resumo:
In bromeliad populations, amount of light and available substrates influence individuals spatial organization. In Atlantic Rainforest of Ilha Grande, the heliophylous bromeliad Neoregelia johannis is a large and abundant species. In this forest, it would be expected that N. johannis would occupy stable substrates, as large trunks, large branches, rock boulders or ground, with high sunlight, enough for the bromeliad survivor. In the present work, we analyzed the distribution and most used substrates of N. johannis in secondary forest. We analyzed the frequency of reproductive modes (sexual and vegetative) used by the bromeliad shoots, registering if the shoots were originated from seeds or by vegetative reproduction. The results indicated an aggregated distribution pattern (Ip = 0.052). The preferred substrate was boulders (91%), whereas tree trunks (6%) and the ground (3%) were rarely used. Small and fragile substrates are unstable to support large adults of this species, which may explain the predominant pattern of establishment over boulders within the secondary forest, as the presence of this substrate also results in more opened canopy cover. Approximately 50% of young individuals entered the population by vegetative reproduction. We conclude that the preferential habit and the aggregated distribution of N. johannis are due to the conjunction of preferred substrate with higher amount of light resulting from breaks in tree canopy over areas with rock blocks, and high frequency of recruitment by vegetative reproduction.
Resumo:
The mechanisms that maintain tree diversity in tropical rain forests are still in debate. Variations in forest structural components produce forest microenvironmental heterogeneity, which in turn may affect plant performance and have been scarcely analyzed in the Amazon. Palms are widespread in the Neotropical rainforests and have relatively well known taxonomy, apart from being ecologically and economically important. The understanding of how palms respond to variation in the forest structural components may help to explain their abundance and richness in a given area. In this study, we describe a palm community and analyze how it is affected by forest microenvironmental heterogeneity. In a pristine "Terra Firme" forest at Reserva Ducke, Manaus, we recorded all adult palm trees in twenty 100 × 10 m plots. In the same plots we recorded the variation in canopy openness, the leaflitter thickness and counted all non-palm forest trees. A total of 713 individuals in 29 palm species were found. The three most abundant species were Astrocaryum sciophilum (Miq.) Pulle, A. gynacanthum Mart. and Attalea attaleoides (Barb. Rodr.) Wess. Boer. The most locally abundant species were also very frequent or occurred in a larger number of plots. There were no significant effects of litter depth, forest canopy openness and forest tree abundance on palm richness. However, in areas where leaf litter was thicker a significant lower number of palm trees occurred. In microsites where proportionally more incident light was reaching the forest understory, due to higher canopy opening, significantly more palm trees were present.
Resumo:
Three sampling sites were analysed in each of the following tropical regions: 1) northwestern São Paulo State, representing a disturbed region; 2) Bonito, Mato Grosso do Sul State, representing a hard water region; and 3) Ubatuba, northern costal region of São Paulo State, a well preserved tropical rainforest region. The hard water region had the highest mean values for macroalgal species richness (6.3) and diversity index (H' = 0.62). Northwest and rainforest regions had the highest percent cover values (22.5% and 17.0%, respectively). All sites in the northwest region had one or two dominant species (percent cover significantly higher than the remaining species), characterizing the niche pre-emption distribution pattern. The same pattern was found in two sites of the Atlantic rainforest. The hard water region had dominance of one species in two out of the three sites, but differently from the northwest region, niche overlap values were lower, evidencing a patch distribution. Competition for space was one of the main factors to explain spatial distribution. Overall, sites characterized by niche pre-emption had lower species richness, higher values for niche width and overlap, dominance index and percent cover of dominant species. In contrast, sites characterized by patch distribution had higher species richness and lower values for niche overlap and width, dominance index and percent cover.
Resumo:
We examined large-scale spatial variation of structural parameters and floristic composition in open Clusia scrub, a vegetation type of the Brazilian "restingas" (sandy coastal plain vegetation). This vegetation is organized in islands separated by sandy stretches with sparse herbaceous vegetation. We located 12 sample areas on three consecutive beach ridges, lying parallel to the coastline and at different distances from the ocean, in close proximity to two lagoons (Cabiúnas and Comprida). Each sample area was divided into three strips. We used the line intercept method to sample all woody plants ³ 50 cm tall. We used nested ANOVA to verify structural variation between different sampling scales. TWINSPAN analysis was performed to examine the variation in floristic composition between areas. The overall diversity index was 3.07. Six species are repeatedly dominant throughout the entire sampling area. There was homogeneity in relation to diversity and species richness between beach ridges but not within beach ridges. Floristic composition and structural parameters did not vary in relation to distance from the sea but floristic composition did vary as a function of proximity to Cabiúnas or Comprida lagoon. Differences in plant cover between sample areas may be related to the paleoformation of this sandy coastal plain.
Resumo:
We examined the relationships between environmental variations in lotic ecosystems with the seasonal dynamics of macroalgae communities at different spatial scales: drainage basin of two rivers (Rio das Pedras and Rio Marrecas), shading (open and shaded stream segments), mesohabitat (riffles and pools), and microhabitats. Data collections were made on a monthly basis between January and December/2007. A total of 16 taxa were encountered (13 species and 3 vegetative groups). All of the biotic parameters (richness, abundance, diversity, equitability, and dominance) were found to be highly variable at all of the spatial scales evaluated. On the other hand, abiotic variables demonstrated differences only at mesohabitat (in terms of current velocity) and shaded habitat (in terms of irradiance) scales. The seasonality of the macroalgae community structure was strongly influenced by microhabitat variables (current velocity, substrate H', and irradiance), demonstrating their importance over time and at different scales. Regional variables (temperature, oxygen saturation, specific conductance, pH, and turbidity) were found to have little influence on the temporal dynamics of the macroalgae communities evaluated.
Resumo:
We examined the ecological distribution of macroalgal communities in streams using species groups (taxonomic units = algal phyla, and morphological = morphological types) with similar structures and functions instead of the species themselves. The study was conducted from June to July/2007 in two drainage basins located in mid-southern region of Paraná State , Brazil. Evaluations of macroalgal communities took into consideration the following spatial scales: the drainage basin (the Pedras river and Marrecas river basins), shading regime (open and shaded stream segments), mesohabitats (riffles and pools), and microhabitats (sampling units of 0.05m2). A total of 29 taxa (23 subgeneric, one generic, and five vegetative groups) were identified. On these, 12 taxa belong to Chlorophyta, 11 to Cyanobacteria, four to Heterokontophyta, and two to Rhodophyta. The proportions of morphological types were: 24% free filaments, 17.25% mats, tufts, gelatinous colonies, and gelatinous filaments, 7% crusts. In terms of spatial scales, we observed a predominance of Chlorophyta in open stream segments and Cyanobacteria in shaded stream segments, reflecting the loss of competitive advantage of green algae in sites with low energy availability. In the mesohabitats, the morphological types recorded in pools were predominantly poorly adapted to fast currents (free filaments), while those found in riffles (mats, tufts and gelatinous filaments) were highly resistant to fast water flows. As such, the use of species groupings based on algal taxonomy associated with morphological characteristics proved to be useful to understanding the distributions of these organisms in lotic environments.
Resumo:
JNK1 is a MAP-kinase that has proven a significant player in the central nervous system. It regulates brain development and the maintenance of dendrites and axons. Several novel phosphorylation targets of JNK1 were identified in a screen performed in the Coffey lab. These proteins were mainly involved in the regulation of neuronal cytoskeleton, influencing the dynamics and stability of microtubules and actin. These structural proteins form the dynamic backbone for the elaborate architecture of the dendritic tree of a neuron. The initiation and branching of the dendrites requires a dynamic interplay between the cytoskeletal building blocks. Both microtubules and actin are decorated by associated proteins which regulate their dynamics. The dendrite-specific, high molecular weight microtubule associated protein 2 (MAP2) is an abundant protein in the brain, the binding of which stabilizes microtubules and influences their bundling. Its expression in non-neuronal cells induces the formation of neurite-like processes from the cell body, and its function is highly regulated by phosphorylation. JNK1 was shown to phosphorylate the proline-rich domain of MAP2 in vivo in a previous study performed in the group. Here we verify three threonine residues (T1619, T1622 and T1625) as JNK1 targets, the phosphorylation of which increases the binding of MAP2 to microtubules. This binding stabilizes the microtubules and increases process formation in non-neuronal cells. Phosphorylation-site mutants were engineered in the lab. The non-phosphorylatable mutant of MAP2 (MAP2- T1619A, T1622A, T1625A) in these residues fails to bind microtubules, while the pseudo-phosphorylated form, MAP2- T1619D, T1622D, Thr1625D, efficiently binds and induces process formation even without the presence of active JNK1. Ectopic expression of the MAP2- T1619D, T1622D, Thr1625D in vivo in mouse brain led to a striking increase in the branching of cortical layer 2/3 (L2/3) pyramidal neurons, compared to MAP2-WT. The dendritic complexity defines the receptive field of a neuron and dictates the output to the postsynaptic cells. Previous studies in the group indicated altered dendrite architecture of the pyramidal neurons in the Jnk1-/- mouse motor cortex. Here, we used Lucifer Yellow loading and Sholl analysis of neurons in order to study the dendritic branching in more detail. We report a striking, opposing effect in the absence of Jnk1 in the cortical layers 2/3 and 5 of the primary motor cortex. The basal dendrites of pyramidal neurons close to the pial surface at L2/3 show a reduced complexity. In contrast, the L5 neurons, which receive massive input from the L2/3 neurons, show greatly increased branching. Another novel substrate identified for JNK1 was MARCKSL1, a protein that regulates actin dynamics. It is highly expressed in neurons, but also in various cancer tissues. Three phosphorylation target residues for JNK1 were identified, and it was demonstrated that their phosphorylation reduces actin turnover and retards migration of these cells. Actin is the main cytoskeletal component in dendritic spines, the site of most excitatory synapses in pyramidal neurons. The density and gross morphology of the Lucifer Yellow filled dendrites were characterized and we show reduced density and altered morphology of spines in the motor cortex and in the hippocampal area CA3. The dynamic dendritic spines are widely considered to function as the cellular correlate during learning. We used a Morris water maze to test spatial memory. Here, the wild-type mice outperformed the knock-out mice during the acquisition phase of the experiment indicating impaired special memory. The L5 pyramidal neurons of the motor cortex project to the spinal cord and regulate the movement of distinct muscle groups. Thus the altered dendrite morphology in the motor cortex was expected to have an effect on the input-output balance in the signaling from the cortex to the lower motor circuits. A battery of behavioral tests were conducted for the wild-type and Jnk1-/- mice, and the knock-outs performed poorly compared to wild-type mice in tests assessing balance and fine motor movements. This study expands our knowledge of JNK1 as an important regulator of the dendritic fields of neurons and their manifestations in behavior.
Resumo:
Acid sulfate (a.s.) soils constitute a major environmental issue. Severe ecological damage results from the considerable amounts of acidity and metals leached by these soils in the recipient watercourses. As even small hot spots may affect large areas of coastal waters, mapping represents a fundamental step in the management and mitigation of a.s. soil environmental risks (i.e. to target strategic areas). Traditional mapping in the field is time-consuming and therefore expensive. Additional more cost-effective techniques have, thus, to be developed in order to narrow down and define in detail the areas of interest. The primary aim of this thesis was to assess different spatial modeling techniques for a.s. soil mapping, and the characterization of soil properties relevant for a.s. soil environmental risk management, using all available data: soil and water samples, as well as datalayers (e.g. geological and geophysical). Different spatial modeling techniques were applied at catchment or regional scale. Two artificial neural networks were assessed on the Sirppujoki River catchment (c. 440 km2) located in southwestern Finland, while fuzzy logic was assessed on several areas along the Finnish coast. Quaternary geology, aerogeophysics and slope data (derived from a digital elevation model) were utilized as evidential datalayers. The methods also required the use of point datasets (i.e. soil profiles corresponding to known a.s. or non-a.s. soil occurrences) for training and/or validation within the modeling processes. Applying these methods, various maps were generated: probability maps for a.s. soil occurrence, as well as predictive maps for different soil properties (sulfur content, organic matter content and critical sulfide depth). The two assessed artificial neural networks (ANNs) demonstrated good classification abilities for a.s. soil probability mapping at catchment scale. Slightly better results were achieved using a Radial Basis Function (RBF) -based ANN than a Radial Basis Functional Link Net (RBFLN) method, narrowing down more accurately the most probable areas for a.s. soil occurrence and defining more properly the least probable areas. The RBF-based ANN also demonstrated promising results for the characterization of different soil properties in the most probable a.s. soil areas at catchment scale. Since a.s. soil areas constitute highly productive lands for agricultural purpose, the combination of a probability map with more specific soil property predictive maps offers a valuable toolset to more precisely target strategic areas for subsequent environmental risk management. Notably, the use of laser scanning (i.e. Light Detection And Ranging, LiDAR) data enabled a more precise definition of a.s. soil probability areas, as well as the soil property modeling classes for sulfur content and the critical sulfide depth. Given suitable training/validation points, ANNs can be trained to yield a more precise modeling of the occurrence of a.s. soils and their properties. By contrast, fuzzy logic represents a simple, fast and objective alternative to carry out preliminary surveys, at catchment or regional scale, in areas offering a limited amount of data. This method enables delimiting and prioritizing the most probable areas for a.s soil occurrence, which can be particularly useful in the field. Being easily transferable from area to area, fuzzy logic modeling can be carried out at regional scale. Mapping at this scale would be extremely time-consuming through manual assessment. The use of spatial modeling techniques enables the creation of valid and comparable maps, which represents an important development within the a.s. soil mapping process. The a.s. soil mapping was also assessed using water chemistry data for 24 different catchments along the Finnish coast (in all, covering c. 21,300 km2) which were mapped with different methods (i.e. conventional mapping, fuzzy logic and an artificial neural network). Two a.s. soil related indicators measured in the river water (sulfate content and sulfate/chloride ratio) were compared to the extent of the most probable areas for a.s. soils in the surveyed catchments. High sulfate contents and sulfate/chloride ratios measured in most of the rivers demonstrated the presence of a.s. soils in the corresponding catchments. The calculated extent of the most probable a.s. soil areas is supported by independent data on water chemistry, suggesting that the a.s. soil probability maps created with different methods are reliable and comparable.
Resumo:
The distribution and traits of fish are of interest both ecologically and socio-economically. In this thesis, phenotypic and structural variation in fish populations and assemblages was studied on multiple spatial and temporal scales in shallow coastal areas in the archipelago of the northern Baltic Proper. In Lumparn basin in Åland Islands, the fish assemblage displayed significant seasonal variation in depth zone distribution. The results indicate that investigating both spatial and temporal variation in small scale is crucial for understanding patterns in fish distribution and community structure in large scale. The local population of Eurasian perch Perca fluviatilis L displayed habitat-specific morphological and dietary variation. Perch in the pelagic zone were on average deeper in their body shape than the littoral ones and fed on fish and benthic invertebrates. The results differ from previous studies conducted in freshwater habitats, where the pelagic perch typically are streamlined in body shape and zooplanktivorous. Stable isotopes of carbon and nitrogen differed between perch with different stomach contents, suggesting differentiation of individual diet preferences. In the study areas Lumparn and Ivarskärsfjärden in Åland Islands and Galtfjärden in Swedish east coast, the development in fish assemblages during the 2000’s indicated a general shift towards higher abundances of small-bodied lower-order consumers, especially cyprinids. For European pikeperch Sander lucioperca L., recent declines in adult fish abundances and high mortalities (Z = 1.06–1.16) were observed, which suggests unsustainably high fishing pressure on pikeperch. Based on the results it can be hypothesized that fishing has reduced the abundances of large predatory fish, which together with bottom-up forcing by eutrophication has allowed the lower-order consumer species to increase in abundances. This thesis contributes to the scientific understanding of aquatic ecosystems with new descriptions on morphological and dietary adaptations in perch in brackish water, and on the seasonal variation in small-scale spatial fish distribution. The results also demonstrate anthropogenic effects on coastal fish communities and underline the urgency of further reducing nutrient inputs and regulating fisheries in the Baltic Sea region.
Resumo:
Single-photon emission computed tomography (SPECT) is a non-invasive imaging technique, which provides information reporting the functional states of tissues. SPECT imaging has been used as a diagnostic tool in several human disorders and can be used in animal models of diseases for physiopathological, genomic and drug discovery studies. However, most of the experimental models used in research involve rodents, which are at least one order of magnitude smaller in linear dimensions than man. Consequently, images of targets obtained with conventional gamma-cameras and collimators have poor spatial resolution and statistical quality. We review the methodological approaches developed in recent years in order to obtain images of small targets with good spatial resolution and sensitivity. Multipinhole, coded mask- and slit-based collimators are presented as alternative approaches to improve image quality. In combination with appropriate decoding algorithms, these collimators permit a significant reduction of the time needed to register the projections used to make 3-D representations of the volumetric distribution of target’s radiotracers. Simultaneously, they can be used to minimize artifacts and blurring arising when single pinhole collimators are used. Representation images are presented, which illustrate the use of these collimators. We also comment on the use of coded masks to attain tomographic resolution with a single projection, as discussed by some investigators since their introduction to obtain near-field images. We conclude this review by showing that the use of appropriate hardware and software tools adapted to conventional gamma-cameras can be of great help in obtaining relevant functional information in experiments using small animals.
Resumo:
The cortical layer 1 contains mainly small interneurons, which have traditionally been classified according to their axonal morphology. The dendritic morphology of these cells, however, has received little attention and remains ill defined. Very little is known about how the dendritic morphology and spatial distribution of these cells may relate to functional neuronal properties. We used biocytin labeling and whole cell patch clamp recordings, associated with digital reconstruction and quantitative morphological analysis, to assess correlations between dendritic morphology, spatial distribution and membrane properties of rat layer 1 neurons. A total of 106 cells were recorded, labeled and subjected to morphological analysis. Based on the quantitative patterns of their dendritic arbor, cells were divided into four major morphotypes: horizontal, radial, ascendant, and descendant cells. Descendant cells exhibited a highly distinct spatial distribution in relation to other morphotypes, suggesting that they may have a distinct function in these cortical circuits. A significant difference was also found in the distribution of firing patterns between each morphotype and between the neuronal populations of each sublayer. Passive membrane properties were, however, statistically homogeneous among all subgroups. We speculate that the differences observed in active membrane properties might be related to differences in the synaptic input of specific types of afferent fibers and to differences in the computational roles of each morphotype in layer 1 circuits. Our findings provide new insights into dendritic morphology and neuronal spatial distribution in layer 1 circuits, indicating that variations in these properties may be correlated with distinct physiological functions.