995 resultados para southwestern Atlantic
Long-term changes in abundance and distribution of microzooplankton in the NE Atlantic and North Sea
Resumo:
Long-term changes in mesozooplankton and phytoplankton populations have been well documented in the North Atlantic region, whereas data for microzooplankton are scarce. This neglected component of the plankton is a vital link in marine food-webs, grazing on smaller flagellates and cyanobacteria and in turn providing food for the larger mesozooplankton. We use the latest tintinnid (Ciliophora, Protista) data from the Continuous Plankton Recorder (CPR) survey in the NE Atlantic and North Sea to examine the phenology, distribution and abundance of this important group of ciliates. Presence/absence data came from 167 122 CPR samples collected between 1960 and 2009 and abundance data from 49 662 samples collected between 1996 and 2009. In the North Atlantic the genus Dictyocysta spp. dominated and Parafavella gigantea showed an increase in abundance around Iceland and Greenland. In the North Sea higher densities of Tintinnopsis spp., Favella serrata and Ptychocylis spp. were found. The presence of tintinnids in CPR samples collected in the North Atlantic has increased over the last 50 years and the seasonal window of high abundance has lengthened. Conversely in the North Sea there has been an overall reduction in abundance. We discuss possible drivers for these long-term changes and point the way forward to more holistic studies that examine how ecosystems, rather than just selected taxa, are responding to climate change.
Resumo:
The relationship between climate, represented by the North Atlantic Oscillation (NAO), and the calanoid copepod Calanus finmarchicus has been extensively studied. The correlation between NAO and C. finmarchicus has broken down (post-1995). In the present study, we revisit the relationship between C. finmarchicus and the NAO. Our reanalysis shows that previous treatment of this data did not take into account 2 aspects of both the C. finmarchicus and NAO index time-series: (1) the presence of significant trends and (2) significant autocorrelation. Our analysis suggests that previously reported relationships between NAO and C. finmarchicus abundance can be explained largely by the trends in both data series. Removing the trend from both time-series resulted in a decrease in the amount of C. finmarchicus abundance variability explained by the NAO. Trend removal eliminated the autocorrelation from the NAO time-series, but not from the C. finmarchicus time-series. Partial autocorrelation analysis showed that the autocorrelation present in the C. finmarchicus time-series is only found at a lag of 1 yr, suggesting strong, year-to-year connectivity in this population. We included the lagged C. finmarchicus abundance into a regression with the NAO and found that C. finmarchicus variability is explained by the previous year’s abundance and, to a much smaller extent, by NAO variability. Limiting the time-series to the most recent 22 yr period (1981 to 2002) showed that the NAO is no longer correlated to C. finmarchicus abundance, and the autocorrelation in the C. finmarchicus abundance series also appears to be weakening.
Resumo:
The circulation of Atlantic water along the European continental slope, in particular the inflow into the North Sea, influences North Sea water characteristics with consequent changes in the environment affecting plankton community dynamics. The long-term effect of fluctuating oceanographic conditions oil the North Sea, pelagic ecosystem is assessed. It is shown that (i) there are similar regime shifts in the inflow through the northern North Sea and in Sea, Surface Temperature, (ii) long-term phytoplankton trends are influenced by the inflow only in some North Sea regions, and (iii) the spatial variability in chemicophysical and biological parameters highlight the influence of smaller scale processes.
Resumo:
Mid-ocean ridges are common features of the world’s oceans but there is a lack of understanding as to how their presence affects overlying pelagic biota. The Mid-Atlantic Ridge (MAR) is a dominant feature of the Atlantic Ocean. Here, we examined data on euphausiid distribution and abundance arising from several international research programmes and from the continuous plankton recorder. We used a generalized additive model (GAM) framework to explore spatial patterns of variability in euphausiid distribution on, and at either side of, the MAR from 60°N to 55°S in conjunction with variability in a suite of biological, physical and environmental parameters. Euphausiid species abundance peaked in mid-latitudes and was significantly higher on the ridge than in adjacent waters, but the ridge did not influence numerical abundance significantly. Sea surface temperature (SST) was the most important single factor influencing both euphausiid numerical abundance and species abundance. Increases in sea surface height variance, a proxy for mixing, increased the numerical abundance of euphausiids. GAM predictions of variability in species abundance as a function of SST and depth of the mixed layer were consistent with present theories, which suggest that pelagic niche availability is related to the thermal structure of the near surface water: more deeply-mixed water contained higher euphausiid biodiversity. In addition to exposing present distributional patterns, the GAM framework enables responses to potential future and past environmental variability including temperature change to be explored.
Resumo:
A long-term time series of plankton records collected by the continuous plankton recorder (CPR) Survey in the northeast Atlantic indicates an increased occurrence of Cnidaria since 2002. In the years 2007 and 2008, outbreaks of the warm-temperate scyphomedusa, Pelagia noctiluca, appeared in CPR samples between 45° N to 58° N and 1° W to 26° W. Knowing the biology of this species and its occurrence in the adjacent Mediterranean Sea, we suggest that P. noctiluca may be exploiting recent hydroclimatic changes in the northeast Atlantic to increase its extent and intensity of outbreaks. In pelagic ecosystems, Cnidaria can affect fish recruitment negatively. Since P. noctiluca is a highly venomous species, outbreaks can also be detrimental to aquaculture and make bathing waters unusable, thus having profound ecological and socio-economic consequences.
Resumo:
New measures of zooplankton biomass have been derived from CPR samples in the North Atlantic from 1958 to 2005. The final aim was to investigate how the zooplankton standing stock had varied throughout the last decades, knowing that in different areas of the North Atlantic significant changes in the distribution of the dominant zooplankton species as well as the plankton assemblage have been observed. During the forty-five years of monitoring the contribution of the different groups (e.g. copepods, euphausiids, meroplankton larvae) to the total zooplankton biomass has been evaluated. The changes in the phenology of the biomass were also considered. The relationship between quantity, quality and seasonal timing of plankton and the poor fish recruitment seen in recent years in the North Sea are also discussed.
Resumo:
35S-Methionine and 3H-leucine bioassay tracer experiments were conducted on two meridional transatlantic cruises to assess whether dominant planktonic microorganisms use visible sunlight to enhance uptake of these organic molecules at ambient concentrations. The two numerically dominant groups of oceanic bacterioplankton were Prochlorococcus cyanobacteria and bacteria with low nucleic acid (LNA) content, comprising 60% SAR11-related cells. The results of flow cytometric sorting of labelled bacterioplankton cells showed that when incubated in the light, Prochlorococcus and LNA bacteria increased their uptake of amino acids on average by 50% and 23%, respectively, compared with those incubated in the dark. Amino acid uptake of Synechococcus cyanobacteria was also enhanced by visible light, but bacteria with high nucleic acid content showed no light stimulation. Additionally, differential uptake of the two amino acids by the Prochlorococcus and LNA cells was observed. The populations of these two types of cells on average completely accounted for the determined 22% light enhancement of amino acid uptake by the total bacterioplankton community, suggesting a plausible way of harnessing light energy for selectively transporting scarce nutrients that could explain the numerical dominance of these groups in situ.
Resumo:
Broad scale climate forcing can interact with local environmental processes to affect the observed ecological phenomena. This causes potential problems of over-extrapolation for results from a limited number of sites or the averaging out of region-specific responses if data from too wide an area are combined. In this study, an area similar in extent to the Celtic Biscay Large Marine Ecosystem, but including off-shelf areas, was partitioned using clustering of satellite chlorophyll (chl-a) measurements. The resulting clusters were used to define areas over which to combine copepod data from the Continuous Plankton Recorder. Following filtering due to data limitations, nine regions were defined with sufficient records for analysis. These regions were consistent with known oceanographic structure in the study area. Off-shelf regions showed a progressively later timing in the seasonal peak of chl-a measurements moving northwards. Generalised additive models were used to estimate seasonal and multiannual signals in the adult and juvenile stages of Calanus finmarchicus, C. helgolandicus and the Paracalanus–Pseudocalanus group. Associations between variables (sea surface temperature (SST), phenology and annual abundance) differed among taxonomic groups, but even within taxonomic groups, relationships were not consistent across regions. For example, in the deep waters off Spain and Portugal the annual abundance of Calanus finmarchicus has a weak positive association with SST, in contrast to the pattern in most other regions. The regions defined in this study provide an objective basis for investigations into the long term dynamics of plankton populations and suggest suitable sub regions for deriving pelagic system indicators.
Resumo:
This study addresses the long-term stability of three trophic groupings in the Northeast Atlantic at regional scales. The most abundant taxa representing phytoplankton, herbivorous copepods, and carnivorous zooplankton were examined from the Continuous Plankton Recorder database. Multivariate control charts using a Bray–Curtis similarity metric were used to assess whether fluctuations within trophic groupings were within or beyond the expected variability. Two evaluation periods were examined: annual changes between 1960 and 1999 (2000–2009 baseline) and recent changes between 2000 and 2009 (1960–1999 baseline). The trends over time in abundance/biomass of trophic levels were region-specific, especially in carnivorous copepods, where abundance did not mirror trends in the overall study area. The stability of phytoplankton was within the expected limits, although not in 2008 and 2009. Higher trophic levels were less stable, perhaps reflecting the added complexity of interactions governing their abundance. In addition, some regions were consistently less stable than others. Correlations in stability between adjacent trophic levels were positive at large marine ecosystem scale but generally non-significant at regional scales. The study suggests that certain regions may be particularly vulnerable to periods of instability in community structure. The benefits of using the control chart method rather than other multivariate measures of plankton dynamics are discussed.
Resumo:
The patterns of copepod species richness (S) and their relationship with phytoplankton productivity, temperature and environmental stability were investigated at climatological, seasonal and year-to-year time scales as well as scales along latitudinal and oceanic–neritic gradients using monthly time series of the Continuous Plankton Recorder (CPR) Survey collected in the North East Atlantic between 1958 and 2006. Time series analyses confirmed previously described geographic patterns. Equatorward and towards neritic environments, the climatological average of S increases and the variance explained by the seasonal cycle decreases. The bi-modal character of seasonality increases equatorward and the timing of the seasonal cycle takes place progressive earlier equatorward and towards neritic environments. In the long-term, the climatological average of S decreased significantly (p < 0.001) between 1958 and 2006 in the Bay of Biscay and North Iberian shelf at a rate of ca. 0.04 year−1, and increased at the same rate between 1991 and 2006 in the northernmost oceanic location. The climatological averages of S correlate positively with those of the index of seasonality of phytoplankton productivity (ratio between the minimum and maximum monthly values of surface chlorophyll) and sea surface temperature, and negatively with those of the proxy for environmental stability (monthly frequency of occurrence of daily averaged wind speed exceeding 10 m s−1). The seasonal cycles of S and phytoplankton productivity (surface chlorophyll as proxy) exhibit similar features in terms of shape, timing and explained variance, but the relationship between the climatological averages of both variables is non-significant. From year-to-year, the annual averages of S correlate negatively with those of phytoplankton productivity and positively with those of sea surface temperature along the latitudinal gradient, and negatively with those of environmental stability along the oceanic–neritic gradient. The annual anomalies of S (i.e. factoring out geographic variation) show a unimodal relationship with those of sea surface temperature and environmental stability, with S peaking at intermediate values of the anomalies of these variables. The results evidence the role of seasonality of phytoplankton productivity on the control of copepod species richness at seasonal and climatological scales, giving support to the species richness–productivity hypothesis. Although sea surface temperature (SST) is indeed a good predictor of richness along the latitudinal gradient, it is unable to predict the increase of richness form oceanic to neritic environments, thus lessening the generality of the species richness–energy hypothesis. Meteo-hydrographic disturbances (i.e. SST and wind speed anomalies as proxies), presumably through its role on mixed layer depth dynamics and turbulence and hence productivity, maximise local diversity when occurring at intermediate frequency and or intensity, thus providing support to the intermediate disturbance hypothesis on the control of copepod diversity.
Resumo:
North Atlantic right whales (Eubalaena glacialis) were absent from Roseway Basin, located off southeastern Nova Scotia, for a 7-year period (1993–1999). The objective of this study was to examine the availability of the right whale's main prey, Calanus finmarchicus, in Roseway Basin during those 7 years to determine if the whales’ absence was due to inadequate prey resources. Since we had no historical data on zooplankton abundances at depth on the Scotian Shelf, near-surface zooplankton abundance data from the Continuous Plankton Recorder were used to infer water-column abundances. In addition, environmental parameters that are often correlated with high zooplankton concentrations were examined. The hypotheses tested were that changes in these parameters would be detectable between three time periods: pre-1993, 1993–1999 and post-1999. Calanus finmarchicus abundance was found to be lowest during 1993–1999, suggesting that right whales were not foraging in Roseway Basin because of the near-absence of their main prey species. Decreased in situ salinity and density proved to be indicators of the changes in circulation in the 1990s that may have affected the advection of C. finmarchicus onto the Scotian Shelf.
Resumo:
Continuous plankton recorders (CPRs) have been used in the Northwest Atlantic for almost 50 years. While data collected by these surveys have provided valuable information on long-term variability in plankton populations, all previous analyses have been limited to only a portion of the geographic range of the available data. Here we present an analysis of the CPR data from the Mid Atlantic Bight to the Labrador Sea. Across this wide geographic range, we found many common associations among the taxa. In particular, the changes in most regions were strongly size structured, with small and medium copepods varying together and often positively related to indicators of phytoplankton abundance. The time series from nearby regions were strongly correlated; however, after 1990, the spatial pattern became more complex. During this period, several of the copepod taxa, noticeably Calanus finmarchicus and Centropages typicus, experienced a series of anomalies that appeared to propagate from northeast to southwest. Although the direction of propagation was consistent with the shelf circulation, the anomalies propagated at a rate much slower than typical current speeds. The timing of the copepod anomalies and their phase speed were similar in character to observed changes in salinity and the position of the Shelf Slope Front. The correspondence between the changes in the plankton community and changes in the physical environmental suggests that physical conditions are a strong driver of interannual variability in Northwest Atlantic Shelf ecosystems.
Resumo:
We report evidences that the zooplankton biomass in the tropical Atlantic has declined with an almost 10-fold drop from the 1950s to 2000. The results of the multiple regression analysis showed that the decline in zooplankton biomass was positively related to the NAO-index and to phosphate concentration. We also found that the depth of the thermocline has decreased over the period of our investigation. Thus, the decline we report in zooplankton biomass may be related to the combined effect of two phenomena driven by global temperature increase: (1) the widening of the distributional range of tropical species due to the expansion of the ‘tropical belt’ and (2) a decrease in primary production resulting from the thinning of the thermocline. The decline of zooplankton biomass we report suggests that global warming of the ocean may be altering tropical food webs, and through them, it may also indirectly impact tropical oceans biogeochemical cycles.
Resumo:
The cool-water copepod Calanus finmarchicus is a key species in North Atlantic marine ecosystems since it represents an important food resource for the developmental stages of several fish of major economic value. Over the last 40 years, however, data from the Continuous Plankton Recorder survey have highlighted a 70 per cent reduction in C. finmarchicus biomass, coupled with a gradual northward shift in the species's distribution, which have both been linked with climate change. To determine the potential for C. finmarchicus to track changes in habitat availability and maintain stable effective population sizes, we have assessed levels of gene flow and dispersal in current populations, as well as using a coalescent approach together with palaeodistribution modelling to elucidate the historical population demography of the species over previous changes in Earth's climate. Our findings indicate high levels of dispersal and a constant effective population size over the period 359 000–566 000 BP and suggest that C. finmarchicus possesses the capacity to track changes in available habitat, a feature that may be of crucial importance to the species's ability to cope with the current period of global climate change.