1000 resultados para solution


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four research methods, such as weight loss test, electrochemical techniques, adsorption isotherm, and quantum chemical calculation, were employed in this paper to study the inhibition efficiency (IE) and inhibition mechanism of three 2H-pyrazole-triazole derivatives, BHOT, FHOT, and CHOT in 1 M HCl solution for mild steel. Using the electrochemical technique, three inhibitors were proved to show a mixed-type character for mild steel by suppressing both anodic and cathodic reactions on the steel surface. The adsorption models of three compounds were established at different temperatures according to their adsorption isotherms. The results of the quantum chemical calculation method indicated that the adsorption sites of 2H-pyrazole-triazole derivatives were strongly centralized on benzene ring, triazole ring, or other substituents. All the results showed that the three derivatives were excellent inhibitors in I M HCl solution for mild steel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxo-triazole derivative (DTP) was synthesized and its inhibiting action on the corrosion of mild steel in sulphuric acid was investigated by means of weight loss, potentiodynamic polarization, EIS and SEM. The results revealed that DTP was an excellent inhibitor and the inhibition efficiencies obtained from weight loss experiment and electrochemical experiment were in good agreement. Potentiodynamic polarization studies clearly revealed that DTP acted essentially as the mixed-type inhibitor. Thermodynamic and kinetic parameters were obtained from weight loss of the different experimental temperatures, which suggested that at different temperatures (298-333 K) the adsorption of DTP on metal surface obeyed Langmuir adsorption isotherm model. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In corrosion medium, metals can deform under tensile stress and form a new active surface with the anodic dissolution of the metals being accelerated. At the same time, the anodic dissolution may accelerate the deformation of the metals. The synergy can lead to crack nucleation and development and shorten the service life of the component. Austenitic stainless steel in acidic chloride solution was in active dissolution condition when stress corrosion cracking (SCC) occurred. It is reasonable to assume that the anodic dissolution play an important role, so it's necessary to study the synergy between anodic dissolution and deformation of austenitic stainless steels. The synergy between deformation and anodic dissolution of AISI 321 austenitic stainless steel in an acidic chloride solution was studied in this paper. The corrosion rate of the steel increased remarkably due to the deformation-accelerated anodic and cathodic processes. The creep rate was increased while the yield strength was reduced by anodic dissolution. The analysis by thermal activation theory of deformation showed a linear relationship between the logarithm of creep rate and the logarithm of anodic cur-rent. Besides, the reciprocal of yield strength was also linearly dependent on the logarithm of anodic current. The theoretical deductions were in good agreement with experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of Cl- on the corrosive wear behaviour of AISI 321 stainless steel in H2SO4 solution was studied via the corrosive wear rate, the load bearing capacity of passive film and the relationship between pitting and corrosive wear. There is a critical load at natural potential, below which the corrosive wear rate is slightly lowered by Cl-, while above which is increased. At natural potential there are more pits at low load than that at a higher one in the wear tracks and the pits are also deeper. The load bearing capacity is lowered by Cl- at passive region and then the corrosive wear rate increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stress corrosion cracking (SCC) of LambdaISI 321 stainless steel in acidic chloride solution was studied by slow strain rate (SSR) technique and fracture mechanics method. The fractured surface was characterized by cleavage fracture. In order to clarify the SCC mechanism, the effects of inhibitor KI on SCC behaviour were also included in this paper. A study showed that the inhibition effects of KI on SCC were mainly attributed to the anodic reaction of the corrosion process. The results of strain distribution in front of the crack tip of the fatigue pre-cracked plate specimens in air, in the blank solution (acidic chloride solution without inhibitor KI) and in the solution added with KI measured by speckle interferometry (SPI) support the unified mechanism of SCC and corrosion fatigue cracking (CFC).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four main methods, such as weight loss test, EIS, adsorption isotherm and quantum chemical calculation were employed to study the inhibition efficiency and mechanism of three derivatives on mild steel in acid solution, whose inhibition efficiency were proved to follow the order of DMTT > NMTT > PMTT, The adsorption model of DMTT was established at different temperature according to the fitted results. The quantum chemical results indicated that the adsorption sites of the derivatives were strongly centralized on benzene ring, triazole ring, etc. QSAR was set up to explain the relationship of molecular structure and the inhibition effect of the derivatives. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purines and its derivatives, such as, guanine, adenine, 2,6-diaminopurine, 6-thioguanine and 2,6-dithiopurine, were investigated as corrosion inhibitors for mild steel in 1 M HCl solution by weight loss measurements, electrochemical tests and quantum chemical calculations. The polarization curves of mild steel in the hydrochloric acid solutions of the purines showed that both cathodic and anodic processes of steel corrosion were suppressed. The Nyquist plots of impedance expressed mainly as a depressed capacitive loop with different compounds and concentrations. For all these purines, the inhibition efficiency increased by increasing the inhibitor concentration, and the inhibition efficiency orders are 2,6-dithiopurine > 6-thioguanine > 2,6-diaminopurine > adenine > guanine with the highest inhibiting efficiency of 88.0% for 10(-3) M 2,6-dithiopurine. The optimized structures of purines, the Mulliken charges, molecular orbital densities and relevant parameters were calculated by quantum chemical calculations. The quantum chemical calculation results inferred that the adsorption belong to physical adsorption, which might arise from the pi stacking between the pi electron of the purines and the metal surface. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclic voltammetry, electrochemical impedance spectroscopy, and rotating disk electrode voltammetry have been used to study the effect of chloride ions on the dissolved oxygen reduction reaction (ORR) on Q235 carbon steel electrode in a 0.02 M calcium hydroxide (Ca(OH)(2)) solutions imitating the liquid phase in concrete pores. The results indicate that the cathodic process on Q235 carbon steel electrode in oxygen-saturated 0.02 M Ca(OH)(2) with different concentrations of chloride ions contain three reactions except hydrogen evolution: dissolved oxygen reduction, the reduction of Fe(III) to Fe(II), and then the reduction of Fe(II) to Fe. The peak potential of ORR shifts to the positive direction as the chloride ion concentration increases. The oxygen molecule adsorption can be inhibited by the chloride ion adsorption, and the rate of ORR decreases as the concentration of chloride ions increases. The mechanism of ORR is changed from 2e(-) and 4e(-) reactions, occurring simultaneously, to quietly 4e(-) reaction with the increasing chloride ion concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A newly developed polymer coil shrinking theory is described and compared with the existing entangled solution theory to explain electrophoretic migration behaviour of DNA in hydroxypropylmethylcellulose (HPMC) polymer solution in buffer containing 100 mM tris(hydroxymethyl)aminomethane 100 mM boric acid, 2 mm ethylenediaminetetraacetic acid at pH 8.3. The polymer coil shrinking theory gave a better model to explain the results obtained. The polymer coil shrinking concentration, C-s, was found to be 0.305% and the uniform entangled concentration, C+, 0.806%. The existence of three regions (the dilute, semidilute, and concentrated solution) at different polymer concentrations enables a better understanding of the system to guide the selection of the best conditions to separate DNA fragments. For separating large fragments (700/800 bp), dilute solutions (HPMC < 0.3%) should be used to achieve a short migration time (10 min). For small fragments (200/300 bp), concentrated solutions are preferred to obtain constant resolution and uniform separation. The best resolution is 0.6% HPMC due to a combined interaction of the polymer coils and the entangled structure. The possibility of DNA separation in semidilute solution is often neglected and the present results indicate that this region has a promising potential for analytical separation of DNA fragments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical description. based on chemical kinetics and electrochemistry, is given of DNA separation in dilute polymer solution by capillary electrophoresis. A self-consistent model was developed leading to predictions of the DNA electrophoretic velocity as a function of the experimental conditions - polymer concentration, temperature, and electric field strength. The effect of selected experimental variables is discussed. The phenomena discussed are illustrated for the example of 100 bp DNA ladder separation in dilute HPMC solution by capillary electrophoresis. This model is the first single model that can fully explain the dependence of DNA electrophoretic velocity on electrophoretic conditions.