949 resultados para solute accumulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The principal paleoceanographic objective of Ocean Drilling Program Leg 115 was to collect a suite of materials that would allow reconstruction of the dynamic features of the late Cenozoic carbonate system in the equatorial Indian Ocean. This goal was achieved with the recovery of sediments from a closely spaced depth transect (1541-4428 m) of five sites (Sites 707 through 711) from on and around the Mascarene Plateau that record the last 50 m.y. of pelagic deposition. More than 2200 measurements of carbonate content are combined here with a highly resolved bio- and magnetostratigraphy to produce the first detailed compilation of bulk, carbonate, and noncarbonate mass accumulation rates (MARs) from the Indian Ocean. These results allow us to recognize three major depositional intervals, each characterized by a distinct depth-dependent pattern of carbonate accumulation: (1) the Paleogene, a time of moderate accumulation rates (0.4-0.7 g/cm**2/1000 yr) and reduced between-site accumulation differences; (2) the early and middle Miocene, a period characterized by greatly reduced carbonate MARs (typically <0.2 g/cm**2/1000 yr) at all sites and a shallow carbonate compensation depth; and (3) the late Miocene to Holocene, a time span marked by the highest bulk and carbonate accumulation rates of the last 50 Ma (1.6-1.8 g/cm**2/1000 yr), and the first appearance of substantial contrasts in carbonate accumulation as a function of the water depth of the drill site. The fundamentally different character of the carbonate system during each of these intervals must represent a regional response to the complex evolution of late Cenozoic oceans and climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nature of Re-platinum-group element (PGE; Pt, Pd, Ir, Os, Ru) transport in the marine environment was investigated by means of marine sediments at and across the Cretaceous-Tertiary boundary (KTB) at two hemipelagic sites in Europe and two pelagic sites in the North and South Pacific. A traverse across the KTB in the South Pacific pelagic clay core found elevated levels of Re, Pt, Ir, Os, and Ru, each of which is approximately symmetrically distributed over a distance of ~1.8 m across the KTB. The Re-PGE abundance patterns are fractionated from chondritic relative abundances: Ru, Pt, Pd, and Re contents are slightly subchondritic relative to Ir, and Os is depleted by ~95% relative to chondritic Ir proportions. A similar depletion in Os (~90%) was found in a sample of the pelagic KTB in the North Pacific, but it is enriched in Ru, Pt, Pd, and Re relative to Ir. The two hemipelagic KTB clays have near-chondritic abundance patterns. The ~1.8-m-wide Re-PGE peak in the pelagic South Pacific section cannot be reconciled with the fallout of a single impactor, indicating that postdepositional redistribution has occurred. The elemental profiles appear to fit diffusion profiles, although bioturbation could have also played a role. If diffusion had occurred over ~65 Ma, the effective diffusivities are ~10**?13 cm**2/s, much smaller than that of soluble cations in pore waters (~10**?6 cm**2/s). The coupling of Re and the PGEs during redistribution indicates that postdepositional processes did not significantly fractionate their relative abundances. If redistribution was caused by diffusion, then the effective diffusivities are the same. Fractionation of Os from Ir during the KTB interval must therefore have occurred during aqueous transport in the marine environment. Distinctly subchondritic Os/Ir ratios throughout the Cenozoic in the South Pacific core further suggest that fractionation of Os from Ir in the marine environment is a general process throughout geologic time because most of the inputs of Os and Ir into the ocean have Os/Ir ratios >/=1. Mass balance calculations show that Os and Re burial fluxes in pelagic sediments account for only a small fraction of the riverine Os (<10%) and Re (<0.1%) inputs into the oceans. In contrast, burial of Ir in pelagic sediments is similar to the riverine Ir input, indicating that pelagic sediments are a much larger repository for Ir than for Os and Re. If all of the missing Os and Re is assumed to reside in anoxic sediments in oceanic margins, the calculated burial fluxes in anoxic sediments are similar to observed burial fluxes. However, putting all of the missing Os and Re into estuarine sediments would require high concentrations to balance the riverine input and would also fail to explain the depletion of Os at pelagic KTB sites, where at most ~25% of the K-T impactor's Os could have passed through estuaries. If Os is preferentially sequestered in anoxic marine environments, it follows that the Os/Ir ratio of pelagic sediments should be sensitive to changes in the rates of anoxic sediment deposition. There is thus a clear fractionation of Os and Re from Ir in precipitation out of sea water in pelagic sections. Accordingly, it is inferred here that Re and Os are removed from sea water in anoxic marine depositional regimes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine biological productivity has been invoked as a possible climate driver during the early Paleogene through its potential influence on atmospheric carbon dioxide concentrations. However, the relationship of export productivity (the flux of organic carbon (C) from the surface ocean to the deep ocean) to organic C burial flux (the flux of organic C from the deep ocean that is buried in marine sediments) is not well understood. We examine the various components involved with atmosphere-to-ocean C transfer by reconstructing early Paleogene carbonate and silica production (using carbonate and silica mass accumulation rates (MARs)); export productivity (using biogenic barium (bio-Ba) MARs); organic C burial flux (using reactive phosphorus (P) MARs); redox conditions (using uranium and manganese contents); and the fraction of organic C buried relative to export productivity (using reactive P to bio-Ba ratios). Our investigations concentrate on Paleocene/Eocene sections of Sites 689/690 from Maud Rise and Site 738 from Kerguelen Plateau. In both regions, export productivity, organic C burial flux, and the fraction of organic C buried relative to export productivity decreased from the Paleocene/early Eocene to the middle Eocene. A shift is indicated from an early Paleogene two-gyre circulation in which nutrients were not efficiently recycled to the surface via upwelling in these regions, to a circulation more like the present day with efficient recycling of nutrients to the surface ocean. Export productivity was enhanced for Kerguelen Plateau relative to Maud Rise throughout the early Paleogene, possibly due to internal waves generated by the plateau regardless of gyre circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drilling on the Iberia Abyssal Plain during Ocean Drilling Program Leg 173 allowed us to recover Upper Cretaceous through Paleocene sediments at Sites 1068 and 1069 and only upper Paleocene sediments at Site 1067, which expands considerably the Upper Cretaceous to Paleocene record for this region. Of these three sites, Site 1068 recovered uppermost Cretaceous sediments as well as the most complete Paleocene record, whereas Site 1067 yielded only uppermost Paleocene sediments (Zone CP8). Site 1069 provided a rather complete upper Campanian through Maastrichtian section but a discontinuous Paleocene record. After a detailed calcareous nannofossil biostratigraphy was documented in distribution charts, we calculated mass accumulation rates for Holes 1068A and 1069A. Sediments in Hole 1068A apparently record the final stages of burial of a high basement block by turbidity flows. Accumulation rates through the Upper Cretaceous indicate relatively high rates, 0.95 g/cm**2/k.y., but may be unreliable because of the lack of datum points and/or possible hiatuses. Accumulation rates in the Paleocene section of Hole 1068A fluctuated every few million years from lower (~0.35 g/cm**2/k.y.) to higher rates (~0.85 g/cm**2/k.y.) until the latest Paleocene, when rates increased to an average of ~2.0 g/cm**2/k.y. Mass accumulation rates for the Upper Cretaceous in Hole 1069A indicate a steady rate of ~0.60 g/cm**2/k.y. from 75 to 72 Ma. There may have been one or more hiatuses between 72 and 68 Ma (combined Zone CC24 through Subzone CC25b), as indicated by the very low accumulation rate of 0.15 g/cm**2/k.y. The Paleocene section of Hole 1069A does not show the same continuous record, which may result from fluctuations in the carbonate compensation depth and poor recovery (average = 40%). Zones CP4 and CP5 are missing within a barren interval; this and numerous other barren intervals affect the precision of the nannofossil zonation and calculation of mass accumulation rates. However, in spite of these missing zones, mass accumulation rates do not seem to indicate the presence of hiatuses as the rates for this barren interval average ~1.0 g/cm**2/k.y. This study set out to test the hypothesis that a reliable biostratigraphic record could be constructed from sediments derived from turbidity flows deposited below the carbonate compensation depth. As illustrated here, not only could a reliable biostratigraphic record be determined from these sediments, but sedimentation and mass accumulation rates could also be determined, allowing inferences to be drawn concerning the sedimentary history of this passive margin. The reliability of this record is confirmed by independent verification by the establishment of a magnetostratigraphy for the same cores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study tests the hypothesis that the late Miocene to early Pliocene constriction and closure of the Central American Seaway (CAS), connecting the tropical Atlantic and East quatorial Pacific (EEP), caused a decrease in productivity in the Caribbean, due to decreased coastal upwelling and an end to the connection with high-productivity tropical Pacific waters. The present study compared paleoceanographic proxies for the interval between 8.3 and 2.5 Ma in 47 samples from south Caribbean ODP Site 999 with published data on EEP DSDP Site 503. Proxies for Site 999 include the relative abundance of benthic foraminiferal species representing bottom current velocity and the flux of organic matter to the sea floor, the ratio of infaunal/epifaunal benthic foraminiferal species and benthic foraminifer accumulation rates (BFARs). In addition, we calculated % resistant planktic foraminifers species and used the previously published % sand fraction and benthic carbon isotope values from Site 999. During early shoaling of the Isthmus (8.3-7.9 Ma) the Caribbean was under mesotrophic conditions, with little ventilation of bottom waters and low current velocity. The pre-closure interval (7.6-4.2 Ma) saw enhanced seasonal input of phytodetritus with even more reduced ventilation, and enhanced dissolution between 6.8 and 4.8 Ma. During the post-closure interval (4.2-2.5 Ma) in the Caribbean, paleoproductivity decreased, current velocity was reduced, and ventilation improved, while the seasonality of phytodetrital input was reduced dramatically, coinciding with the establishment of the Atlantic-Pacific salinity contrast at 4.2 Ma. Our data support the hypothesis that late Miocene constriction of the CAS at 7.9 Ma and its closure at 4.2 Ma caused a gradual decrease in paleoproductivity in the Caribbean, consistent with decreased current velocity and seasonality of the phytodetrital input.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceara Rise, located east the Amazon River mouth, is covered with a thick blanket of pelagic carbonate and hemipelagic terrigenous sediment. The terrigenous component has been extracted from 57 bulk sediment samples at Ocean Drilling Program (ODP) Sites 925 and 929 on Ceara Rise to obtain a Cenozoic record of riverine discharge from northern South America. From the early Eocene to early Miocene (55-20 Ma), terrigenous accumulation was dominated by moderate amounts of generally large-grained, gray to green sediment especially depleted in elements that are enriched in post-Archaean shale (e.g. Cs, Th, Yb). However, pulsed inputs of relatively small-grained, gray to green terrigenous sediment less depleted in the above elements occurred in the late Eocene and Oligocene. The accumulation of terrigenous sediment decreased significantly until 16.5 Ma. In the middle Miocene (16.5-13 Ma), terrigenous accumulation was dominated by small amounts of small-grained, tan sediment notably depleted in Na and heavy rare earth elements. The accumulation rate of terrigenous sediment increased markedly from the latest Miocene (10 Ma) to the present day, a change characterized by deposition of gray-green sediment enriched in elements that are enriched in post-Archaean shale. Observed changes in terrigenous sediment at Ceara Rise record tectonism and erosion in northern South America. The Brazil and Guyana shields supplied sediment to the eastern South American margin until the middle Miocene (20-16.5 Ma) when a period of thrusting, shortening and uplift changed the source region, probably first to highly weathered and proximal Phanerozoic sediments. By the late Miocene (9 Ma), there was a transcontinental connection between the Andes and eastern South America. Weathering products derived from the Andes have increasingly dominated terrigenous deposition at Ceara Rise since the Late Miocene and especially since the late Pliocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A feature of Pliocene climate is the occurrence of "permanent El Niño-like" or "El Padre" conditions in the Pacific Ocean. From the analysis of sediment cores in the modern northern Benguela upwelling, we show that the mean oceanographic state off Southwest Africa during the warm Pliocene epoch was also analogous to that of a persistent Benguela "El Niño". At present these events occur when massive southward flows of warm and nutrient-poor waters extend along the coasts of Angola and Namibia, with dramatic effects on regional marine ecosystems and rainfall. We propose that the persistent warmth across the Pliocene in the Benguela upwelling ended synchronously with the narrowing of the Indonesian seaway, and the early intensification of the Northern Hemisphere Glaciations around 3.0-3.5 Ma. The emergence of obliquity-related cycles in the Benguela sea surface temperatures (SST) after 3 Ma highlights the development of strengthened links to high latitude orbital forcing. The subsequent evolution of the Benguela upwelling system was characterized by the progressive intensification of the meridional SST gradients, and the emergence of the 100 ky cycle, until the modern mean conditions were set at the end of the Mid Pleistocene transition, around 0.6 Ma. These findings support the notion that the interplay of changes in the depth of the global thermocline, atmospheric circulation and tectonics preconditioned the climate system for the end of the warm Pliocene epoch and the subsequent intensification of the ice ages.