1000 resultados para solid torus
Resumo:
Tris(2,2'-bipyridine)ruthenium(II) ((Ru(bpy)(3)](2+)) is one of the most extensively studied and used electrochemiluminescent (ECL) compounds owing to its superior properties, which include high sensitivity and stability under moderate conditions in aqueous solution. In this paper we present a simple method for the preparation of [Ru(bpy)(3)](2+)-containing microstructures based on electrostatic assembly The formation of such micro-structures occurs in a single process by direct mixing of aqueous solutions of [Ru(bpy)(3)]Cl-2 and K-3[Fe(CN)(6)] at room temperature. The electrostatic interactions between [Ru(bpy)(3)]Cl-2 cations and [Fe(CN)(6)](3-) anions cause them to assemble into the resulting microstructures. Both the molar ratio and concentration of reactants were found to have strong influences on the formation of these microstructures. Most importantly, the resulting [Ru(bpy)(3)](2+)- containing microstructures exhibit excellent ECL behavior and, therefore, hold great promise for solid-state ECL detection in capillary electrophoresis (CE) or CE microchips.
Resumo:
Highly ordered, vertically oriented TiO2 nanotube arrays were prepared by potentiostatic anodization of titanium on FTO-coated glass substrate and for the first time successfully applied in the fabrication of solid-state dye sensitized solar cells (SSDSCs), giving a power conversion efficiency of 1.67% measured under an irradiation of air mass 1.5 global (AM 1.5 G) full sunlight. Furthermore, 3.8% efficiency was reached with a 2.8 mu m thin TiO2 nanotube array film based on a metal free organic dye using ionic liquid electrolyte.
Resumo:
Ce6-xHoxMoO15-delta(0.0 <= x <= 1.2) was synthesized by modified sol-gel method and characterized by differential X-ray diffraction(XRD), Raman, and X-ray photoelectron spectroscopy(XPS) methods. The oxide ionic conductivity of the samples was investigated by AC impedance spectroscopy. It shows that all the samples are single phase with a cubic fluorite structure. The solid solution Ce6-xHoxMoO15-delta(x=0.6) was detected to be the best conducting phase with the highest conductivity(sigma(t)=1.05x10(-2) S/cm) at 800 degrees C and the lowest activation energy(E-a=1.09 eV). These properties suggest that this kind of material has a potential application in intermediate-low temperature solid oxide fuel cells.
Resumo:
In this correspondence, we report on the first preparation of novel, robust Ru(bpy)(3)(2+)-containing supramolecular microstructures via a solution-based self-assembly strategy, carried out by directly mixing H2PtCl6 and Ru(bpy)(3)Cl-2 aqueous solutions at room temperature. It reveals that both the molar ratio and concentration of reactants have a heavy influence on the morphologies of such microstructures. The electrochemical behavior of the Ru(bpy)(3)(2+) components contained in the solid film of the microstructures formed on the electrode surface is also studied and found to exhibit a diffusion-controlled voltammetric feature. Most importantly, such microstructures exhibit excellent electrochemiluminescence (ECL) behaviors and therefore hold great promise as new luminescent materials for solid-state ECL detection in capillary electrophoresis (CE) or CE microchip.
Resumo:
A simple, large scale, and one-step process for the preparation of tris(2,2'-bipyridyl)ruthenium(I) (Ru(bpy)(3)(2+)) doped SiO2@carbon nanotubes (MVNTs) coaxial nanocable used for an ultrasensitive electrochemiluminescence (ECL) is presented for the first time. More importantly, a directly coated as-formed functional material on ITO electrode surface exhibits excellent ECL behavior, good stability, and high sensitivity in the presence of tripropylamine (TPA). This novel functional material will find potential applications in biosensor, electrophoresis and electroanalysis.
Resumo:
Based on electrogenerated chemiluminescence (ECL), a novel method for fabrication of alcohol dehydrogenase (ADH) biosensor by self-assembling ADH to Ru(bpy)(3)(2+) -AuNPs aggregates (Ru-AuNPs) on indium tin oxide (ITO) electrode surface has been developed. Positively charged Ru(bpy)(3)(2+) could be immobilized stably on the electrode surface with negatively charged AuNPs in the form of aggregate via electrostatic interaction. On the other hand, AuNPs are favourable candidates for the immobilization of enzymes because amine groups and cysteine residues in the enzymes are known to bind strongly with AuNPs. Moreover, AuNPs can act as tiny conduction centers to facilitate the transfer of electrons. Such biosensor combined enzymatic selectivity with the sensitivity of ECL detection for quantification of enzyme substrate, and it displayed wide linear range, high sensitivity and good stability.
Resumo:
Bifunctional nanoarchitecture has been developed by combining the magnetic iron oxide and the luminescent Ru(bpy)(3)(2+) encapsulated in silica. First, the iron oxide nanoparticles were synthesized and coated with silica, which was used to isolate the magnetic nanoparticles from the outer-shell encapsulated Ru(bpy)(3)(2+) to prevent luminescence quenching. Then onto this core an outer shell of silica containing encapsulated Ru(bpy)(3)(2+) was grown through the Stober method. Highly luminescent Ru(bpy)(3)(2+) serves as a luminescent marker, while magnetic Fe3O4 nanoparticles allow external manipulation by a magnetic field. Since Ru(bpy)(3)(2+) is a typical electrochemiluminescence (ECL) reagent and it could still maintain such property when encapsulated in the bifunctional nanoparticle, we explored the feasibility of applying the as-prepared nanostructure to fabricating an ECL sensor; such method is simple and effective. We applied the prepared ECL sensor not only to the typical Ru(bpy)(3)(2+) co-reactant tripropylamine (TPA), but also to the practically important polyamines. Consequently, the ECL sensor shows a wide linear range, high sensitivity, and good stability.
Resumo:
The reaction mechanism of the Beckmann rearrangement over B2O3/gamma-Al2O3 and TS-1 in the gas phase has been investigated by isotope labeling approach. The isotopic labeled products were measured by mass spectrometry method. By exchanging oxygen with H, 180 in the rearrangement step, it was found that the exchange reaction between cyclohexanone oxime and (H2O)-O-18 over B2O3/-gamma-Al2O3 and TS-1 could only be carried out in some extent. It suggested that the dissociation of nitrilium, over solid acids be not completely free as the classical mechanism. A concept of the dissociation degree (alpha) that is defined as the ratio of the dissociated intermediate nitrilium to the total intermediate nitrilium has been proposed. By fitting the experimental values with the calculation equation of isotopic labeled products, it is obtained that a values for B2O3/-gamma-Al2O3 and TS-1 are 0.199 and 0.806 at the reaction conditions, respectively.
Resumo:
Sin and Pr doped CeO2 and Ce6MoO15 based materials were synthesized by sol-gel method. The structure of the powders were characterized by X-ray diffraction (XRD), Raman spectra, field emission scanning electron microscopy(FE-SEM) and the electrical conductivity of the samples was investigated by AC impedance spectroscopy. By comparing the structure and electrical properties of different systems, it could be concluded that the electrical property of Ce6MoO15 based system is better than that of CeO2 system. The added Mo element resulted in the increase of gain size and improved the grain boundary conductivity notably below 600 degrees C, while the Pr dopant induced the smaller grain size and improved the grain boundary conductivity of the materials.
Resumo:
A series of solid state electrolytes, Ce-5.2 RE0.8 MoO15-delta (RE = Y, La, Sm, Gd, Dy, Ho, Er), were synthesized by sol-gel method. Their structures and electrical conductivities were characterized by X-ray Diffraction (XRD), Raman and X-ray Photoelectron Spectroscopy (XPS) and AC impedance spectroscopy, respectively. The results show that the concentrations of oxygen vacancy increased with increasing x and their conductivity were improved. And the cell parameters increase as the radius of RE3+ increases. Because the ionic radius of doped Dy3+ (0.0908 nm) is closed to that of Ce4+ (0.0920 nm), their oxide has minimal cell elastic straining between RE3+ and oxygen vacancy, and the system has the least association enthalpy, thus the oxide Ce-5.2 Dy-0.8 MoO15-delta exhibits a higher conductivity (7.02 x 10(-3) S/cm) and lower activation energy (1.056 eV) compared to the other doped compounds.
Resumo:
The new compounds La2-xCaxMo1.7W0.3O9-delta (0 <= x <= 0.2) in which La3+ substituted with Ca2+ were synthesized by dry-chemistry techniques based on the oxygen Ionic conductor La2Mo1.7W0.3O9. The new series were characterized by X-ray Diffraction (XRD), Raman and X-ray Photoelectron Spectroscopy (XPS) and the electrical conductivity of samples were investigated by AC impedance spectroscopy. The lattice parameters were reduced due to the smaller atomic radius of the Ca2+ compared with that of the La3+. Furthermore, Additional oxygen vacancies were introduced into La2Mo1.7W0.3O9 lattice by substitution, and then the oxygen ionic conductivity was increased. At 550 degrees C, the conductivity increased 89.9%, that is, from 0.79 x 10(-4) S center dot cm(-1) (x=0) to 1.5 X 10(-4)S center dot cm(-1) (x=0.16, 0.2).
Resumo:
A reversibly tunable colloidal photonic crystal between two stop bands was realized by a liquid-solid phase transition of liquid infiltrated into the air voids of silica opals. The difference of the peak wavelengths of the two stop bands was dependent on the diameter of the silica opals and the difference of the refractive index of the filled solvent between the solid and liquid state. The reversibly tunable photonic crystals have good stability and reproducibility.