944 resultados para soil moisture content
Resumo:
This paper reports the application of Advanced Process Control (APC) techniques for improving the thermal energy efficiency of a paperboard-making process by regulating the Machine Direction (MD) profile of the basis weight and moisture content of the paper-board. A Model Predictive Controller (MPC) is designed so that the sheet moisture and basis weight tracking errors along with variations of the sheet moisture and basis weight are reduced. Also, the drainage is maximised through improved wet-end stability which can facilitate driving the sheet moisture set-point closer to its upper specification limit over time. It is shown that the proposed strategy can result in reducing steam usage by 8-10%. A simulation study based on a UK board machine is presented to show the effectiveness of the proposed technique. © 2011 Intl Journal of Adv Mechatr.
Resumo:
Host feeding selection by the female pea leafminer, Liriomyza huidobrensis, on 47 species of plants was studied. The leaves were sectioned by microtome, and 15 characteristics of the leaf tissue structure were measured under a microscope. Correlation analysis between host feeding selection and leaf tissue structure indicated that the preference of host feeding selection was positively correlated with the percentage of moisture content of leaves and negatively with thickness of the epidermis wall, and densities of the palisade and spongy tissues of leaves. Leaf tissue structure was influential in feeding and probing behavior of female L. huidobrensis. So, thickness of epidermis wall, densities of the palisade and spongy tissues can act as a physical barrier to female oviposition. Furthermore, higher densities of palisade and spongy tissues can be considered a resistant trait which affects mining of leaf miner larvae as well. As a result, plants with lower leaf moisture content may not be suitable for the development of L. huidobrensis.
Resumo:
Factors that affect the engineering properties of cement stabilized soils such as strength are discussed in this paper using data on these factors. The selected factors studied in this paper are initial soil water content, grain size distribution, organic matter content, binder dosage, age and curing temperature, which has been collated from a number of international deep mixing projects. Some resulting correlations from this data are discussed and presented. The concept of Artificial Neural Networks and its applicability in developing predictive models for deep mixed soils is presented and discussed using a subset of the collated data. The results from the neural network model were found to emulate the known trends and reasonable estimates of strength as a function of the selected variables were obtained. © 2012 American Society of Civil Engineers.
Resumo:
A two-week trial was conducted to study the effect of feeding rates on heat shock protein levels in larval white sturgeon. The larvae (30 day post hatch, 230 mg initial body weight) were fed a commercial feed (12.6% moisture, 49.5% crude protein. 20.7% Crude fat, and 8.6% ash) at 5, 15. or 25% body weight per clay (BW d(-1)). Liver heat shock proteins (Hsp) were measured before and after the larvae were subjected to a heat shock from 18 to 26 degrees C at 1 degrees C/15 min and maintained at 26 degrees C for 4 h thereafter. Before heat shock, larvae fed 5% BW d(-1) had significantly (P<0.05) lower final body weight, RNA/DNA ratio, whole body lipid and protein content, and Hsp60 and Hsp70 levels but higher protein efficiency ratio, and whole body moisture content than larvae fed the two higher feeding rates. Heat shock significantly induced Hsp60 and Hsp70 levels in the liver of all fish but they were lower in larvae fed the 5% than those fed 15 and 25% BW d(-1). Hsp70 level increased much more than Hsp60 after the heat shock Suggesting that Hsp70 is a more sensitive biomarker under our experimental conditions. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The capacity of hybrid tilapia Oreochromis mossambicus x O. niloticus [23.2 +/- 0.2 g (mean +/- SE)] to show compensatory growth was assessed in an 8-week experiment. Fish were deprived of feed for 1, 2 and 4 weeks, and then fed to satiation for 4 weeks; fish fed to satiation during the experiment served as control. Water temperature gradually declined from 28.1 to 25.5 degrees C throughout the experiment. Specific growth rate (SGR) decreased with progressive food deprivation. At the end of deprivation, body weight was lower in the deprived fish than in the control. Fish deprived for 4 weeks exhibited lower contents of lipids and energy in whole body, and higher moisture content and ratio of protein to energy (P/E) than those of the control; they also consumed feed faster than the control when normal feeding was resumed. All deprived fish showed higher food intake (FI) than that of the control during re-alimentation; however, enhanced SGR was only observed in the fish deprived for 4 weeks. There were no significant differences in digestibility of protein and energy, food efficiency (FE) or energy retention efficiency between the control and deprived fish. At the end of re-alimentation, deprived fish failed to catch up in body weight with the control, while content of moisture, lipids and energy, and P/E in whole body of the deprived fish did not significantly differ from that of the control. The results of the experiment revealed that the hybrid tilapia reared in freshwater showed partial capacity for compensatory growth following food deprivation of 4 weeks, and that growth compensation was due mainly to increased FI, rather than to improved FE.
Resumo:
Composting is being widely employed in the treatment of petroleum waste. The purpose of this study was to find the optimum control parameters for petroleum waste in-vessel composting. Various physical and chemical parameters were monitored to evaluate their influence on the microbial communities present in composting. The CO2 evolution and the number of microorganisms were measured as the activity of composting. The results demonstrated that the optimum temperature, pH and moisture content were 56.5 - 59.5 degreesC, 7.0 - 8.5 and 55 % - 60%, respectively. Under the optimum conditions, the removal efficiency of petroleum hydrocarbon reached 83.29% after 30 days composting.
Resumo:
Triplicate groups of 3.8-g juvenile Chinese sturgeon Acipenser sinensis were reared for 8 weeks in indoor flow-through systems on one of four diets: a natural diet consisting solely of live tubificid worms, a semimoist practical diet, a dry practical diet, and a purified diet. The formulated diets were prepared in the laboratory and had protein contents of 47-50%. Except for the group fed the purified diet, fish showed high survival (94-96%) and growth (final weight, 41-45 g). Survival and specific growth rate did not differ significantly between groups fed the natural, semimoist, and dry practical diets, but were significantly (P < 0.05) lower in fish fed the purified diet. Proximate analysis showed that fish fed purified diet had lower protein and lipid levels but a higher moisture content than fish fed other diets. Our results demonstrated that growth and survival of cultured juvenile Chinese sturgeon fed practical diets were comparable with those fed live tubificid worms. However, Chinese sturgeon fed a purified diet showed inferior growth and survival.
Resumo:
采用裂区试验设计,对黄土塬区补充灌溉及氮磷配施条件下麦田土壤水分动态、作物产量及水分利用效率等进行研究。结果表明:1)冬小麦对土壤水分的利用深度随小麦生长发育逐渐加深,在越冬前期和孕穗期分别达1.2和2.2 m土层以下,不同处理土壤含水量在小麦生育前期差异不明显,孕穗后氮磷配施处理的土壤含水量显著低于不施肥处理;2)试验条件下,补充灌溉后同样施肥处理的作物产量与雨养相比,虽有增加但不显著;不论是雨养水平,还是补充灌溉水平,氮磷配施均表现出显著的增产效果,从低氮低磷到高氮高磷,增产幅度在134%到240%之间;3)氮磷配施能显著提高冬小麦水分利用效率,而补充灌溉后水分利用效率降低3%~30%,但未达显著水平;4)不同氮磷配施的增产效应高于补充灌溉,补充灌溉与高氮高磷处理有显著的水肥协同效应,能显著提高作物产量并保持较高的水分利用效率。
Resumo:
本文以长期定位试验为依托,研究了黄土高原旱塬区黑垆土大田对比试验和长期定位施肥对土壤肥力及硝态氮累积和淋溶的影响。结果表明:长期施用有机肥能够明显增加土壤养分,氮磷和有机肥配施效果显著;和1984年土壤养分状况相比,大田对比试验土壤有机质增加了27.1%,全氮和全磷提高了84.2%和34.8%,有效氮、有效磷和速效钾增加了46.9%、540.0%和10.2%,养分水平与长期定位试验中氮磷配施相近。长期定位试验中氮磷配施或与有机肥配施能够有效地减少土壤剖面中硝酸盐的累积和淋溶,氮肥单施硝态氮累积量最大,为1006.4kg/hm2,大田对比试验土壤硝态氮总累积量较长期定位试验中施用氮肥处理的总累积量少。
Resumo:
利用室内控制试验研究了根据不同深度土壤水分传感器灌溉处理对冬小麦生物学性状及水分利用率等的影响。结果显示,以10 cm探头控制灌溉最为省水,同时冬小麦生物学性状及水分利用率等最佳。由于试验冬小麦处于生育前期,随着小麦生育期延伸,当根系超过30 cm深度时,根系吸水的深度增加,探头的埋设深度需要田间试验进行更详细的研究。
Resumo:
采用土柱法研究了不同PAA施入量对3种黄土高原主要土壤类型(黄绵土、黑垆土和塿土)的持水性能、土壤饱和导水率和土壤蒸发量的影响,以进一步阐明PAA的保水和蒸发作用。结果表明,施入PAA提高了土壤的持水性能。在未加入PAA之前黑垆土的持水性能最低,塿土的最高,黄绵土的次之;加入PAA后,黑垆土的持水能力显著增加,几乎为对照的2倍,塿土和黄绵土也都比对照高。土壤的供水能力随PAA用量的增加而增强,不同土壤类型之间表现为:塿土>黑垆土>黄绵土。未加入PAA时,3种土壤饱和导水率大小为:塿土>黑垆土>黄绵土;加入PAA后,3种土壤的饱和导水率都降低,且基本随PAA用量的增加而降低。在一定水分条件下,PAA的施入提高了土壤的抗蒸发性能,随PAA用量的增加,塿土和黑垆土的土壤蒸发量增加,但都低于对照,而黄绵土的土壤蒸发量随PAA用量的增加而降低。其中施PAA54.5 mg/kg的塿土、黑垆土和施PAA225.8 mg/kg的黄绵土与对照相比,土壤蒸发量分别减少了44.0%,44.6%和30.6%。
Resumo:
以黄土高原沟壑区砂石覆盖苹果园为研究对象,对600 cm范围内土壤剖面水分含量的时间分异和空间分布状况进行了研究。结果表明:600 cm土层范围内,一周年内可划分为冬季增墒期和夏季失墒期两个阶段;土壤剖面水分空间分布随土壤深度的增加呈现波动性变化且稳定性不同,土壤含水量变化幅度随土层深度增加而变小,据此可将600 cm范围内的土壤剖面划分为速变层、相对稳定层、缓变层和稳定层;土壤水分在不同层次上的分布差异,8月土壤剖面不同层次含水量差异最大,11月次之,5月再次之,1月土壤不同层次含水量差异最小。综合看来,除土壤表层因砂石覆盖水分增加外,土壤剖面含水量随土壤深度的增加而减少且趋于稳定,水分下渗能力减弱;冬季土壤含水量多且分布均匀,夏季土壤水分减少且主要集中在上层,此时土壤不同层次水分含量差异大。
Resumo:
采用田间小区试验,监测夏玉米不同生长期土壤水分和硝态氮剖面含量变化,研究不同施氮量对其时空变化及籽粒产量、水肥利用效率的影响,探讨氮肥对水肥资源高效利用的调节作用。结果表明:不同施氮处理,土壤剖面水分和硝态氮随土壤深度的变化趋势基本一致,即表层50 cm土壤水分和硝态氮含量较高且呈降低态,50~110 cm相对较低且波动较小,灌浆期二者均达到最低值;各生长期表层50 cm土壤含水量呈不施氮处理均高于施氮处理,50~110 cm土层则相反;施氮能提高土壤硝态氮含量,土壤硝态氮运移受土壤水分状况和含量的影响,含量越高,向下移动越深;施氮能显著提高水分利用效率及籽粒产量,增产效果明显(增产28.52%~37.86%),二者均以施氮240 kg/hm2处理最高;随施氮量的增加籽粒产量及籽粒吸氮量和水分利用效率增幅均表现为先升高后降低之趋势,当施氮量超过240 kg/hm2后,籽粒产量和水分利用效率提高并不显著;不施氮与施氮处理氮素生产力、氮肥利用率之间均存在极显著差异。在本试验条件下,从控制土壤硝态氮积累及取得较高的产量和氮素利用率综合考虑,夏玉米的适宜施氮量范围应控制在120~240 kg/hm2较好。
Resumo:
基于苜蓿长期连续种植定位试验,研究了不同施肥与采样位置差异对苜蓿草地地上部分生物量和土壤水分的影响。苜蓿长期连续种植19年后,施肥对苜蓿地上部分生物量的影响不显著;试验样地内呈由外及内植株高度逐渐下降、地上部分生物量积累逐渐减小的"生物漏斗"现象,距样地中心位置不同引起的差异远远超过施肥处理引起的差异。中下层土壤水分也呈类似的漏斗状分布。相关分析表明,苜蓿地上部分生物量与1 m以下土壤水分含量呈显著相关,表明在长期连续种植条件下下层土壤水分状况是决定苜蓿草地生长状况的主要因素。
Resumo:
在干旱半干旱地区,砂石覆盖作为一项传统的覆盖技术,可以明显减少土壤蒸发,为作物生长提供良好的水分条件。为研究不同粒径和厚度砂石覆盖对土壤蒸发的影响,进行了室内模拟试验,对3种粒径(2.5~10、10~25和25~40 mm)和2种覆盖厚度(8 cm和14 cm)以及不同粒径砂石配比条件下土壤水分蒸发进行了研究。结果表明,砂石覆盖能有效地抑制土壤蒸发,在土壤含水量较高的阶段,这种抑制作用更加明显。砂石覆盖对土壤蒸发的抑制作用与粒径和覆盖厚度密切相关,在2.5~40 mm粒径范围内,随着砂石粒径的增大,砂石覆盖对蒸发的抑制作用降低,对蒸发过程的影响减弱,覆盖厚度越大,蒸发量越小。有效的砂石配比应选择细砂石处理,不宜过粗。