999 resultados para sandflies from caves
Resumo:
The partitioning of Green Fluorescent Protein (GFP) in poly(ethylene glycol)/Na-poly(acrylate) aqueous two-phase systems (PEG/NaPA-ATPS) has been investigated. The aqueous two-phase systems are formed by mixing the polymers with a salt and a protein solution. The protein partitioning in the two-phase system was investigated at 25 degrees C. The concentration of the GFP was measured by fluorimetry. It was found that the partitioning of GFP depends on the salt type, pH and concentration of PEG. The data indicates that GFP partitions more strongly to the PEG phase in presence of Na2SO4 relative to NaCl. Furthermore, the GFP partitions more to the PEG phase at higher pH. The partition to the PEG phase is strongly favoured in systems with larger tie-line lengths (i.e. systems with higher polymer concentrations). The molecular weight of PEG is important since the partition coefficient (K) of GFP gradually decreases with increasing PEG size, from K ca. 300-400 for PEG 400 to K equal to 1.19 for PEG 8000. A separation process was developed where GFP was separated from a homogenate in two extraction steps: the GFP is first partitioned to the PEG phase in a PEG 3000/NaPA 8000 system containing 3 wt% Na2SO4, where the K value of GFP was 8. The GFP is then re-extracted to a salt phase formed by mixing the previous top-phase with a Na2SO4 solution. The K-value of GFP in this back-extraction was 0.22. The total recovery based on the start material was 74%. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work deals with the use of an aqueous two-phase system (ATPS) of PEG/citrate to remove proteases from a Clostridium perfringens fermentation broth. To plan the experimental tests and evaluate the corresponding results, three successive experimental designs were employed, for which the PEG molar mass (M-PEG) and concentration (C-PEG), the citrate concentration (C-C) and the pH were selected as independent variables, while the purification factor (PF), the partition coefficient (K), the activity yield (Y) and the selectivity (S) were selected as responses. PF of proteases in the top phase was shown to increase with increasing MPEG and decreasing Cc, whereas a completely opposite trend was observed for K. On the other hand, Y was favored by simultaneous decreases in both these variables, while S decreased with increasing Cc. Therefore, selecting a simultaneous increase in PF and Y as the most desirable result, the best performance of the system was obtained using M-PEG = 10-000 g/mol C-PEG = 22% (w/w) and C-c = 8.0% (w/w) at pH 8.5. Under these conditions, the activity yield was very high (131 %) but the purification factor (4.2) and the selectivity (4.3) were lower than those ensured by more selective purification methods. According to these results, the ATPS seems to be an interesting alternative primary concentration/decontamination step for vaccine preparation from C. perfringens fermented broth. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Nisin is a commercially available bacteriocin produced by Lactococcus lactis ATCC 11454 and used as a natural agent in the biopreservation of food. In the current investigation, milk whey, a byproduct from dairy industries was used as a fermentation substrate for the production of nisin. Lactococcus lactis ATCC 11454 was developed in a rotary shaker (30 degrees C/36 h/100 rpm) using two different media with milk whey (i) without filtration, pH 6.8, adjusted with NaOH 2 mol L-1 and without pH adjustment, both autoclaved at 121 degrees C for 30 min, and (ii) filtrated (1.20 mu m and 0.22 mu m membrane filter). These cultures were transferred five times using 5 mL aliquots of broth culture for every new volume of the respective media. RESULTS: The results showed that culture media composed of milk whey without filtration supplied L. lactis its adaptation needs better than filtrated milk whey. Nisin titers, in milk whey without filtration (pH adjusted), was 11120.13 mg L-1 in the second transfer, and up to 1628-fold higher than the filtrated milk whey, 6.83 mg.L-1 obtained in the first(t) transfer. CONCLUSIONS: Biological processing of milk byproducts (milk whey) can be considered a profitable alternative, generating high-value bioproducts and contributing to decreasing river disposals by dairy industries. (C) 2008 Society of Chemical Industry.
Resumo:
BACKGROUND: Purification of a-toxin produced by Clostridium perfringens type A in aqueous two-phase systems (ATPS) was studied with a full two-level factorial design on two factors (concentrations of 8000 g mol(-1) PEG and phosphate salt at pH 8.0), to estimate the influence of these factors on the purification results. RESULTS: The partition coefficient (K), purification factor (PF) and activity yield (Y) were strongly influenced by the PEG and phosphate concentrations. Raising the levels of the two factors increased these responses. The highest purification factor (5.7) was obtained with PEG and phosphate concentrations of 17.5% and 15%, respectively. CONCLUSION: These results support the proposal that polymer excluded volume and hydrophobic interactions are the factors that drive the alpha-toxin in PEG/phosphate aqueous two-phase systems. (c) 2008 Society of Chemical Industry
Resumo:
The phenolic compounds content and antioxidant activity of pomace from the vinification of grape varieties widely produced in Brazil (Cabernet Sauvignon, Merlot, Bordeaux and Isabel) were investigated with a view to their exploitation as a potential source of natural antioxidants. Cabernet Sauvignon grape pomace was found to have the highest content of total phenolic compounds (74.75 mg gallic acid equivalent (GAE)/g), the highest antioxidant activity (determined using the 2,2`-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging methods; 485.42 and 505.52 mu Mol Trolox equivalent antioxidant capacity (TEAC)/g, respectively), and the highest reducing power (determined using the FRAP method; 249.46 mu Mol TEAC/g). The Bordeaux variety showed the highest oxidation inhibition power (41.13%), determined using the beta-carotene/linoleic acid method and the highest content of total anthocyanins (HPLC; 29.17 mg/g). Catechin was the most abundant non-anthocyanic compound identified in the grape pomace (150.16 mg/100 g) for all varieties. In this study, pomaces of the red wine vinification of Cabernet Sauvignon and Bordeaux varieties showed the highest potential as a source of antioxidant compounds and natural colourants, respectively. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Bacteriocins produced by lactic acid bacteria are gaining increased importance due to their activity against undesirable microorganisms in foods. In this study, a concentrated acid extract of a culture of Lactobacillus sakei subsp. sakei 2a, a bacteriocinogenic strain isolated from a Brazilian pork product, was purified by cation exchange and reversed-phase chromatographic methods. The amino acid sequences of the active antimicrobial compounds determined by Edman degradation were compared to known protein sequences using the BLAST-P software. Three different antimicrobial compounds were obtained, P1, P2 and P3, and mass spectrometry indicated molecular masses of 4.4, 6.8 and 9.5 kDa, respectively. P1 corresponds to classical sakacin P, P2 is identical to the 30S ribosomal protein S21 of L. sakei subsp. sakei 23 K, and P3 is identical to a histone-like DNA-binding protein HV produced by L. sakei subsp. sakei 23 K. Total genomic DNA was extracted and used as target DNA for PCR amplification of the genes sak, lis and his involved in the synthesis of P1, P2 and P3. The fragments were cloned in pET28b expression vector and the resulting plasmids transformed in E. coli KRX competent cells. The transformants were active against Listeria monocytogenes, indicating that the activity of the classical sakacin P produced by L. sakei 2a can be complemented by other antimicrobial proteins.
Resumo:
Phenolic compounds are found in seaweed species together with other Substances presenting antioxidant activity. The objective of this work was to evaluate the antioxidant activity of the free phenolic acids (FPA) fraction from the seaweed Halimeda monile, and its activity to protect the expression of hepatic enzymes in rats, under experimental CCI(4) injury. The antioxidant activity was measured by the DPPH method. The FPA fraction (80 mg/kg, p.o.) was administered during 20 consecutive days to rats. The peroxidation was performed by thiobarbituric acid reactive substances (TBARS). The SOD and CAT enzymatic expressions were measured by RT/PCR. The histology technique was used to evaluate liver injuries. The expression of both, CAT and SOD genes, was more preserved by FPA. Only partial injury could be observed by histology in the liver of rats receiving FPA as compared with the control group; and CCI(4) administration induced 60% more peroxidation as compared with the rats receiving FPA. These data suggest that FPA could modulate the antioxidant enzymes and oxidative status in the liver through protection against adverse effects induced by chemical agents.
Resumo:
Few molecular studies have been devoted to the finger drop process that occurs during banana fruit ripening. Recent studies revealed the involvement of changes in the properties of cell wall polysaccharides in the pedicel rupture area. In this study, the expression of cell-wall modifying genes was monitored in peel tissue during post-harvest ripening of Cavendish banana fruit, at median area (control zone) and compared with that in the pedicel rupture area (drop zone). To this end, three pectin methylesterase (PME) and seven xyloglucan endotransglycosylase/hydrolase (XTH) genes were isolated. The accumulation of their mRNAs and those of polygalaturonase, expansin, and pectate lyase genes already isolated from banana were examined. During post-harvest ripening, transcripts of all genes were detected in both zones, but accumulated differentially. MaPME1, MaPG1, and MaXTH4 mRNA levels did not change in either zone. Levels of MaPME3 and MaPG3 mRNAs increased greatly only in the control zone and at the late ripening stages. For other genes, the main molecular changes occurred 1-4 d after ripening induction. MaPME2, MaPEL1, MaPEL2, MaPG4, MaXTH6, MaXTH8, MaXTH9, MaEXP1, MaEXP4, and MaEXP5 accumulated highly in the drop zone, contrary to MaXTH3 and MaXTH5, and MaEXP2 throughout ripening. For MaPG2, MaXET1, and MaXET2 genes, high accumulation in the drop zone was transient. The transcriptional data obtained from all genes examined suggested that finger drop and peel softening involved similar mechanisms. These findings also led to the proposal of a sequence of molecular events leading to finger drop and to suggest some candidates.
Resumo:
Culture conditions (pH, time, temperature, inoculum size, orbital agitation speed and substrate concentration) for an extracellular collagenase produced by Candida albicans URM3622 were studied using three experimental designs (one 2(6-2) fractionary factorial and two 2(3) full factorial). The analysis of the 2(6-2) fractionary design data indicated that agitation speed and substrate concentration had the most significant effect on collagenase production. Based on these results, two successive 2(3) full factorial design experiments were run in which the effects of substrate concentration, orbital agitation speed and pH were further studied. These two sets of experiments showed that all variables chosen were significant for the enzyme production, with the maximum collagenolytic activity of 6.8 +/- 0.4 U achieved at pH 7.0 with an orbital agitation speed of 160 rpm and 2% substrate concentration. Maximum collagenolytic activity was observed at pH 8.2 and 45 degrees C. The collagenase was stable within a pH range of 7.2-8.2 and over a temperature range of 28-45 degrees C. These results clearly indicate that C. albicans URM3622 is a potential resource for collagenase production and could be of interest for pharmaceutical, cosmetic and food industry. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
Leaf fractions of Wilbrandia ebracteata were investigated for anti-ulcerogenic effects in ethanol and indomethacin-induced gastric ulcer assays in mice. Protective anti-ulcer effects were detected only in the ethanol-induced ulcer assay effects after pre-treatment with MeOH extract, MeOH chlorophyll-free, chlorophyll residue, HEX, DCM, aqueous MeOH fraction, ethyl acetate (EtOAc) and aqueous fractions. A potent anti-ulcerogenic effect was determined after pre-treatment of animals with EtOAc fraction, which was fractionated for isolation of active constituents. Seven flavonoids, 3`,4`,5,6,7,8-hexahydroxyflavonol, orientin, isoorientin, vitexin, isovitexin, luteolin, 6-methoxi-luteolin were isolated from the leaves of W. ebracteata (Cucurbitaceae) by chromatographic methods and identified by their spectral data. The data suggest that flavonoids are active anti-ulcerogenic compounds from leaves of W. ebracteata. The ability of scavenging free radicals was evaluated by DPPH reduction assay by TLC of flavonoids isolated.
Resumo:
The objective of this work was to characterize exotic fruits (cambuci, araca-boi, camu-camu, jaracatia, araca) and commercial frozen pulps (araca, cambuci, umbu, coquinho, pana, native passion fruit, cagaita) from Brazil in relation to their bioactive compounds contents and antioxidant capacity. Camu-camu (Myrciaria dubia) presented the highest vitamin C and total phenolics contents (397 and 1797 mg/100 g f.w., respectively) and the highest DPPH(center dot) scavenging capacity. Coquinho (Butia capitata) also showed a significant vitamin C content (43 mg/100 g f.w.). Among the commercial frozen pulps, cagaita presented the higher DPPH scavenging activity and inhibition of beta-carotene bleaching. A good correlation between total phenols and DPPH scavenging activity was found for fruits (r = 0.997) and commercial frozen pulps (r = 0.738). However, no correlation was found for total phenols and inhibition of beta-carotene bleaching. Quercetin and kaempferol derivatives were the main flavonoids present in all samples and cyanidin derivatives were detected only in camu-camu. Camu-camu and araca (Psidium guineensis) showed the highest total ellagic acid contents (48 and 63.5 mg/100 g f.w.). All commercial frozen pulps presented lower contents of bioactive compounds and antioxidant capacity than their respective fruits. According to our results, camu-camu and araca might be sources of bioactive compounds.
Resumo:
The objective of the present study was to evaluate the occurrence of Salmonella spp. in 15 samples of pork meat cuts (T-bone, shank, sausage and ribs) commercialized in open markets of Pelotas (RS, Brazil) and verify the prevalent serovars, and test the isolates profile of sensitivity to several antibiotics of importance in medicine (nalidixic acid, ampicillin, aztreonam, kanamycin, carbenicillin, cephalothin, cefoxitin, ceftriaxone, ciprofloxacin, chloramphenicol, gentamicin, sulfonamide, tetracycline and trimetoprina). Twelve samples (80%) were contaminated by Salmonella enterica, serovars Infantis, Derby, Panama and Typhimurium. All isolates were susceptible to trimetoprin, aztreonam, ciprofloxacin, ceftriaxone and cefoxitin. For the other antibiotics, the pattern of sensitivity varied as serovar. In addition, 39.1% of isolates showed up to be multiresistant.
Resumo:
The amylase from Neurospora crassa is an interesting enzyme, having higher stability than amylase from Aspergillus oryzea under a broad range of pH values. Moreover, the N. crassa enzyme may be immobilized on different supports with good retention of enzyme activity. The best stabilizations were achieved using Eupergit C 250 L or glyoxyl agarose, with which the enzyme remained fully active at 60C for 24 h while the soluble enzyme remained about 17%. The glyoxyl agarose immobilized enzyme had high thermostability, high optimal temperature (65C) and broad pH/activity profile, suggesting that this enzyme has potential for food and industrial applications for starch modification.
Resumo:
Phospholipase A(2) (PLA(2), EC 3.1.1.4), a major component of snake venoms, specifically catalyzes the hydrolysis of fatty acid ester bonds at position 2 of 1,2-diacyl-sn-3-phosphoglycerides in the presence of calcium. This article reports the purification and biochemical/functional characterization of BmooTX-I, a new myotoxic acidic phospholipase A(2) from Bothrops moojeni snake venom. The purification of the enzyme was carried out through three chromatographic steps (ion-exchange on DEAE-Sepharose, molecular exclusion on Sephadex G-75 and hydrophobic chromatography on Phenyl-Sepharose). BmooTX-I was found to be a single-chain protein of 15,000 Da and pI 4.2. The N-terminal sequence revealed a high homology with other acidic Asp49 PLA(2)S from Bothrops snake venoms. It displayed a high phospholipase activity and platelet aggregation inhibition induced by collagen or ADP. Edema and myotoxicity in vivo were also induced by BmooTX-I. Analysis of myotoxic activity was carried out by optical and ultrastructural microscopy, demonstrating high levels of leukocytary infiltrate. Previous treatment of BmooTX-1 with BPB reduced its enzymatic and myotoxic activities, as well as the effect on platelet aggregation. Acidic myotoxic PLA(2)S from Bothrops snake venoms have been little explored and the knowledge of its structural and functional features will be able to contribute for a better understanding of their action mechanism regarding enzymatic and toxic activities. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This study consists of the bioassay-guided fractionation of the dichloromethane extract from Eudistoma vannamei and the pharmacological characterization of the active fractions. The dried hydromethanolic extract dissolved in aqueous methanol was partitioned with dichloromethane and chromatographed on a silica gel flash column. The anti-proliferative effect was monitored by the MTT assay. Four of the latest fractions, numbered 14 to 17, which held many chemical similarities amongst each other, were found to be the most active. The selected fractions were tested for viability, proliferation and death induction on cultures of HL-60 promycloblastic leukemia cells. The results suggested that the observed cytotoxicity is related to apoptosis induction. (C) 2007 Elsevier Inc. All rights reserved.