969 resultados para rotational oscillation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Application of differential geometry to study the dynamics of electrical machines by Gabriel Kron evoked only theoretical interest among the power system engineers and was considered hardly suitable for any practical use. Extension of Kron's work led to a physical understanding of the processes governing the small oscillation instability in power system. This in turn has made it possible to design a self-tuning Power System Stabilizer to contain the oscillatory instability over arm extended range of system and operating conditions. This paper briefly recounts the history of this development and touches upon the essential design features of the stabilizer. It presents some results from simulation studies, laboratory experiments and recently conducted field trials at actual plants-all of which help to establish the efficacy of the proposed stabilizer and corroborate the theoretical findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments and computer simulations demonstrate that water spontaneously fills the hydrophobic cavity of a carbon nanotube. To gain a quantitative thermodynamic understanding of this phenomenon, we use the recently developed two phase thermodynamics method to compute translational and rotational entropies of confined water molecules inside single-walled carbon nanotubes and show that the increase in energy of a water molecule inside the nanotube is compensated by the gain in its rotational entropy. The confined water is in equilibrium with the bulk water and the Helmholtz free energy per water molecule of confined water is the same as that in the bulk within the accuracy of the simulation results. A comparison of translational and rotational spectra of water molecules confined in carbon nanotubes with that of bulk water shows significant shifts in the positions of the spectral peaks that are directly related to the tube radius. (C) 2011 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the Brownian dynamics simulation results on the translational and bond-angle-orientational correlations for charged colloidal binary suspensions as the interparticle interactions are increased to form a crystalline (for a volume fraction phi = 0.2) or a glassy (phi = 0.3) state. The translational order is quantified in terms of the two- and four-point density autocorrelation functions whose comparisons show that there is no growing correlation length near the glass transition. The nearest-neighbor orientational order is determined in terms of the quadratic rotational invariant Q(l) and the bond-orientational correlation functions g(l)(t). The l dependence of Q(l) indicates that icosahedral (l = 6) order predominates at the cost of the cubic order (l = 4) near the glass as well as the crystal transition. The density and orientational correlation functions for a supercooled liquid freezing towards a glass fit well to the streched-exponential form exp[-(t/tau)(beta)]. The average relaxation times extracted from the fitted stretched-exponential functions as a function of effective temperatures T* obey the Arrhenius law for liquids freezing to a crystal whereas these obey the Vogel-Tamman-Fulcher law exp[AT(0)*/(T* - T-0*)] for supercooled Liquids tending towards a glassy state. The value of the parameter A suggests that the colloidal suspensions are ''fragile'' glass formers like the organic and molecular liquids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theoretical and experimental study has been carried out on the transient characteristics of a centrifugal pump during starting and stopping periods. Experiments have been conducted on a volute pump with different valve openings to study the dynamic behaviour of the pump during normal start up and stopping, when a small length of discharge pipe line is connected to discharge flange of the pump. Similar experiments have also been conducted when the test pump was part of a hydraulic system to study the system effect on the transient characteristics. Instantaneous rotational speed, flowrate, and delivery and suction pressures of the pump are recorded and it is observed in ail the tested cases that the change of pump behaviour during the transient period is quasi-steady. The dynamic characteristics of the pump have been analysed by a numerical model using the method of characteristics. The model is presented and the results are compared with the experimental data. As the model contains speed acceleration and unsteady discharge terms, the model can be applied for analyses of purely unsteady cases where the pump dynamic characteristics show considerable departure from their steady-state characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work is a numerical study of heat transfer characteristics from the bottom tip of a cylinder spinning about a vertical axis in an infinitely saturated porous medium. The problem is axisymmetric. The non-dimensionalized governing equations are solved using the SIMPLER algorithm on a staggered grid. The influence of rotational Reynolds numbers and Darcy numbers on the heat transfer for a Grashof number of 104 and Prandtl number of 7.0 is studied. It is found that for very high Darcy numbers, over a wide range of rotational Reynolds numbers, the heat transfer takes place mainly due to conduction. The convective heat transfer takes place for lower Darcy numbers and for higher rotational Reynolds numbers. Moreover, there is a rapid increase in the overall Nusselt number below a certain Darcy number with increase in the rotational Reynolds numbers. The effect of the Darcy number and the rotational Reynolds number on the heat transfer and fluid flow in the porous medium is depicted in the form of streamline and isotherm plots. The variation of the overall Nusselt number with respect to the Darcy number for various rotational Reynolds numbers is plotted. The variation of the local Nusselt number with respect to the radial coordinate at the heated tip of the vertical cylinder is plotted for various Darcy and rotational Reynolds numbers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theoretical and computer simulation studies of orientational relaxation in dense molecular liquids are presented. The emphasis of the study is to understand the effects of collective orientational relaxation on the single-particle orientational dynamics. The theoretical analysis is based on a recently developed molecular hydrodynamic theory which allows a self-consistent description of both the collective and the single-particle orientational relaxation. The molecular hydrodynamic theory can be used to derive a relation between the memory function for the collective orientational correlation function and the frequency-dependent dielectric function. A novel feature of the present work is the demonstration that this collective memory function is significantly different from the single-particle rotational friction. However, a microscopic expression for the single-particle rotational friction can be derived from the molecular hydrodynamic theory where the collective memory function can be used to obtain the single-particle orientational friction. This procedure allows, us to calculate the single-particle orientational correlation function near the alpha-beta transition in the supercooled liquid. The calculated correlation function shows an interesting bimodal decay below the bifurcation temperature as the glass transition is approached from above. Brownian dynamics simulations have been carried out to check the validity of the above procedure of translating the memory function from the dielectric relaxation data. We have also investigated the following two issues important in understanding the orientational relaxation in slow liquids. First, we present an analysis of the ''orientational caging'' of translational motion. The value of the translational friction is found to be altered significantly by the orientational caging. Second, we address the question of the rank dependence of the dielectric friction using both simulation and the molecular hydrodynamic theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple but self-consistent microscopic theory for the time dependent solvation energy of both ions and dipoles is presented which includes, for the first time, the details of the self-motion of the probe on its own solvation dynamics. The theory leads to several interesting predictions. The most important of them is that, for dipolar solvation, both the rotational and the translational motions of the dipolar solute probe can significantly accelerate the rate of solvation. In addition, the rotational self-motion of the solute can also give rise to an additional mechanism of nonexponentiality in solvation time correlation functions in otherwise slow liquids. A comparison between the present theoretical predictions and the recent experimental studies of Maroncelli et al. on solvation dynamics of aniline in l-propanol seems to indicate that the said experiments have missed the initial solvent response up to about 45 ps. After mapping the experimental results on the redefined time scale, the theoretical results can explain the experimental results for solvation of aniline in 1-propanol very well. For ionic solvation, the translational motion is significant for light solutes only. For example, for Li+ in water, translational motion speeds up the solvation by about 20%. The present theory demonstrates that in dipolar solvation the partial quenching of the self-motion due to the presence of specific solute-solvent interactions (such as H-bonding) may lead to a much slower solvation than that when the self-motion is present. This point has been discussed. In addition, we present the theoretical results for solvation of aniline in propylene carbonate, Here, the solvation is predicted to be complete within 15-20 ps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper reports the results of a theoretical study of the forces and factors driving the solubilization of n-alkane solubilizates into the micellar core of some non-ionic surfactants, based on a micellar model which includes the cavity forming free energy as a component of micellization. The solubilizate is n-decane and the non-ionic surfactants considered are n-decyl-polyoxyethylene surfactants. The extent of solubilization, i.e. the mole fraction of the solubilizate within the core has been calculated. The results indicate that the incorporated solubilizate has more translational and rotational degrees of freedom as compared to those of the tail parts of the surfactants present in the core. This drives the total free energy of aggregation after solubilization into a more favourable direction. The results are in fair agreement with the experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the flow due to a rotating disk non-symmetrically placed with respect to the height of the enclosing stationary cylinder is analyzed numerically. The full Navier-Stokes equations expressed in terms of stream function and vorticity are solved by successive over-relaxation for different disk radii, its distance from the bottom casing and rotational Reynolds numbers. It is observed that the flow pattern is strongly influenced by the size and the position of the disk. When the disk is very close to the top casing and small in radius, there are two regions of different scales and the vortices in the region of small scale are trapped between the disk and the top casing. Further, the variation of the moment coefficient is determined for different positions and sizes of the rotating disk. The calculations shows that the frictional torque increases rapidly, when the disk approaches the top casing. This finding is of importance for the design of vertical rotating disk reactors applied in chemical vapor deposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A general kind of Brownian vortices is demonstrated by applying an external nonconservative force field to a colloidal particle bound by a conservative optical trapping force at a liquid-air interface. As the liquid medium is translated at a constant velocity with the bead trapped at the interface, the drag force near the surface provides enough rotational component to bias the particle's thermal fluctuations in a circulatory motion. The interplay between the thermal fluctuations and the advection of the bead in constituting the vortex motions is studied, and we infer that the angular velocity of the circulatory motion offers a comparative measure of the interface fluctuations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors present the simulation of the tropical Pacific surface wind variability by a low-resolution (R15 horizontal resolution and 18 vertical levels) version of the Center for Ocean-Land-Atmosphere Interactions, Maryland, general circulation model (GCM) when forced by observed global sea surface temperature. The authors have examined the monthly mean surface winds acid precipitation simulated by the model that was integrated from January 1979 to March 1992. Analyses of the climatological annual cycle and interannual variability over the Pacific are presented. The annual means of the simulated zonal and meridional winds agree well with observations. The only appreciable difference is in the region of strong trade winds where the simulated zonal winds are about 15%-20% weaker than observed, The amplitude of the annual harmonics are weaker than observed over the intertropical convergence zone and the South Pacific convergence zone regions. The amplitudes of the interannual variation of the simulated zonal and meridional winds are close to those of the observed variation. The first few dominant empirical orthogonal functions (EOF) of the simulated, as well as the observed, monthly mean winds are found to contain a targe amount of high-frequency intraseasonal variations, While the statistical properties of the high-frequency modes, such as their amplitude and geographical locations, agree with observations, their detailed time evolution does not. When the data are subjected to a 5-month running-mean filter, the first two dominant EOFs of the simulated winds representing the low-frequency EI Nino-Southern Oscillation fluctuations compare quite well with observations. However, the location of the center of the westerly anomalies associated with the warm episodes is simulated about 15 degrees west of the observed locations. The model simulates well the progress of the westerly anomalies toward the eastern Pacific during the evolution of a warm event. The simulated equatorial wind anomalies are comparable in magnitude to the observed anomalies. An intercomparison of the simulation of the interannual variability by a few other GCMs with comparable resolution is also presented. The success in simulation of the large-scale low-frequency part of the tropical surface winds by the atmospheric GCM seems to be related to the model's ability to simulate the large-scale low-frequency part of the precipitation. Good correspondence between the simulated precipitation and the highly reflective cloud anomalies is seen in the first two EOFs of the 5-month running means. Moreover, the strong correlation found between the simulated precipitation and the simulated winds in the first two principal components indicates the primary role of model precipitation in driving the surface winds. The surface winds simulated by a linear model forced by the GCM-simulated precipitation show good resemblance to the GCM-simulated winds in the equatorial region. This result supports the recent findings that the large-scale part of the tropical surface winds is primarily linear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: The dynamics of poly(2-vinylpyridine) in chloroform solution has been examined by C-13 spin-lattice relaxation time and NOE measurements as a function of temperature. The experiments were performed at 50.3 and 100.6 MHz. The backbone carbon relaxation data have been analyzed in terms of six motional models. Among these models, the models which consider conformational transitions and bond librations for the backbone were found to be more successful. Pyridyl ring motion has been modeled as a restricted rotation with the rotational amplitude varying with temperature. The activation energy parameters obtained from the relaxation data of the pyridyl ring carbon have been compared with the energy barrier for ring rotation estimated from conformational energy calculations using the AM1 semiempirical quantum chemical method. The results of the conformational energy calculations support the description of pyridyl ring motion as a restricted rotation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An attempt is made to draw a profile of adenosine triphosphate (ATP) and to project its many actions. The amazing versatility of its participation in a number of synthetic reactions lies in the oligophosphate structure. Many proteins that use ATP have conserved binding 'P-loop' but this gives no clue what makes it so special. The energy transducing reactions leading to synthesis of the terminal phosphodiester had at least three strategies. Of these, direct dehydration and transfer of inorganic phosphate using respiratory energy operate through mechano-coupling in a multisubunit protein. This tripartite, knob-stalk-base structure provides a novel mechanism of rotational catalysis and the tiniest molecular motor, All the reactions occur in concert with no sign of energized chemical intermediate. With the new knowledge on the crystal structure of F-1-ATPase, proton translocation needs a relook. An alternative perspective is emerging on energy being received and stored in polypeptide structure by breaking hydrogen bonds. Membrane serves the purpose of mobilizing the constituent proteins and also as a potential energy carrier of proteins with little loss of energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the results of molecular-dynamics simulations of systems of dumbbell molecules confined by parallel molecular walls. We have carried out systematic studies of three cases: freezing, steady flows, and stick-slip friction. We find that the molecular orientational degrees of freedom cause the surface layers to deviate from a planar configuration. Nevertheless, steady flows, in a channel as narrow as 15 molecular sizes, display continuum behavior. A range of mechanisms in the dynamics of the freezing of a confined fluid is found, as a function of the wall-fluid interactions and the bond length of the dumbbell molecules. The simple order-disorder transition associated with stick-slip motion in the presence of a layer of monoatomic lubricant molecules is supplanted by more complex behavior due to rotational degrees of freedom of the diatomic molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential predictability of the Indian summer monsoon due to slowly varying sea surface temperature (SST) forcing is examined. Factors responsible for limiting the predictability are also investigated. Three multiyear simulations with the R30 version of the Geophysical Fluid Dynamics Laboratory's climate model are carried out for this purpose, The mean monsoon simulated by this model is realistic including the mean summer precipitation over the Indian continent. The interannual variability of the large-scale component of the monsoon such as the "monsoon shear index" and its teleconnection with Pacific SST is well simulated by the model in a 15-yr integration with observed SST as boundary condition. On regional scales, the skill in simulating the interannual variability of precipitation over the Indian continent by the model is rather modest and its simultaneous correlation with eastern Pacific SST is negative but poor as observed. The poor predictability of precipitation over the Indian region in the model is related to the fact that contribution to the interannual variability over this region due to slow SST variations [El Nino-Southern Oscillation (ENSO) related] is comparable to those due to regional-scale fluctuations unrelated to ENSO SST. The physical mechanism through which ENSO SST tend to produce reduction in precipitation over the Indian continent is also elucidated. A measure of internal variability of the model summer monsoon is obtained from a 20-yr integration of the same model with fixed annual cycle SST as boundary conditions but with predicted soil moisture and snow cover. A comparison of summer monsoon indexes between this run and the observed SST run shows that the internal oscillations can account for a large fraction of the simulated monsoon variability. The regional-scale oscillations in the observed SST run seems to arise from these internal oscillations. It is discovered that most of the interannual internal variability is due to an internal quasi-biennial oscillation (QBO) of the model atmosphere. Such a QBO is also found in the author's third 18-yr simulation in which fixed annual cycle of SST as well as soil moisture and snow cover are prescribed. This shows that the model QBO is not due to land-surface-atmosphere interaction. It is proposed that the model QBO arises due to an interaction between nonlinear intraseasonal oscillations and the annual cycle. Spatial structure of the QBO and its role in limiting the predictability of the Indian summer monsoon is discussed.