902 resultados para resonant tunneling devices
Resumo:
Interaction with smart objects can be accomplished with different technologies, such as tangible interfaces or touch computing, among others. Some of them require the object to be especially designed to be 'smart', and some other are limited in the variety and complexity of the possible actions. This paper describes a user-smart object interaction model and prototype based on the well known event-condition-action (ECA) reasoning, which can work, to a degree, independently of the intelligence embedded into the smart object. It has been designed for mobile devices to act as mediators between users and smart objects and provides an intuitive means for personalization of object's behavior. When the user is close to an object, this one publishes its 'event & action' capabilities to the user's device. The user may accept the object's module offering, which will enable him to configure and control that object, but also its actions with respect to other elements of the environment or the virtual world. The modular ECA interaction model facilitates the integration of different types of objects in a smart space, giving the user full control of their capabilities and facilitating creative mash-uping to build customized functionalities that combine physical and virtual actions
Resumo:
The apparition of new mobile phones operating systems often leads to a flood of mobile applications rushing into the market without taking into account needs of the most vulnerable users groups: the people with disabilities. The need of accessible applications for mobile is very important especially when it comes to access basic mobile functions such as making calls through a contact manager. This paper presents the technical validation process and results of an Accessible Contact Manager for mobile phones as a part of the evaluation of accessible applications for mobile phones for people with disabilities.
Resumo:
The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fuel flexibility opening the possibility to reduce the nuclear stockpile producing energy from actual LWR irradiated fuel with an efficiency of 45?46%, either in the form of Hydrogen, electricity, or both.
Resumo:
Application of arc erosion to the patterning of metallic contacts in organic devices is presented. A home-made systems and details of the working principles are described. Advantages and drawbacks of this novel technology are discussed.
Resumo:
This paper presents a study on the effect of blurred images in hand biometrics. Blurred images simulates out-of-focus effects in hand image acquisition, a common consequence of unconstrained, contact-less and platform-free hand biometrics in mobile devices. The proposed biometric system presents a hand image segmentation based on multiscale aggregation, a segmentation method invariant to different changes like noise or blurriness, together with an innovative feature extraction and a template creation, oriented to obtain an invariant performance against blurring effects. The results highlight that the proposed system is invariant to some low degrees of blurriness, requiring an image quality control to detect and correct those images with a high degree of blurriness. The evaluation has considered a synthetic database created based on a publicly available database with 120 individuals. In addition, several biometric techniques could benefit from the approach proposed in this paper, since blurriness is a very common effect in biometric techniques involving image acquisition.
Resumo:
The increasing demand of security oriented to mobile applications has raised the attention to biometrics, as a proper and suitable solution for providing secure environment to mobile devices. With this aim, this document presents a biometric system based on hand geometry oriented to mobile devices, involving a high degree of freedom in terms of illumination, hand rotation and distance to camera. The user takes a picture of their own hand in the free space, without requiring any flat surface to locate the hand, and without removals of rings, bracelets or watches. The proposed biometric system relies on an accurate segmentation procedure, able to isolate hands from any background; a feature extraction, invariant to orientation, illumination, distance to camera and background; and a user classification, based on k-Nearest Neighbor approach, able to provide an accurate results on individual identification. The proposed method has been evaluated with two own databases collected with a HTC mobile. First database contains 120 individuals, with 20 acquisitions of both hands. Second database is a synthetic database, containing 408000 images of hand samples in different backgrounds: tiles, grass, water, sand, soil and the like. The system is able to identify individuals properly with False Reject Rate of 5.78% and False Acceptance Rate of 0.089%, using 60 features (15 features per finger)
Resumo:
New trends in biometrics are oriented to mobile devices in order to increase the overall security in daily actions like bank account access, e-commerce or even document protection within the mobile. However, applying biometrics to mobile devices imply challenging aspects in biometric data acquisition, feature extraction or private data storage. Concretely, this paper attempts to deal with the problem of hand segmentation given a picture of the hand in an unknown background, requiring an accurate result in terms of hand isolation. For the sake of user acceptability, no restrictions are done on background, and therefore, hand images can be taken without any constraint, resulting segmentation in an exigent task. Multiscale aggregation strategies are proposed in order to solve this problem due to their accurate results in unconstrained and complicated scenarios, together with their properties in time performance. This method is evaluated with a public synthetic database with 480000 images considering different backgrounds and illumination environments. The results obtained in terms of accuracy and time performance highlight their capability of being a suitable solution for the problem of hand segmentation in contact-less environments, outperforming competitive methods in literature like Lossy Data Compression image segmentation (LDC).
Resumo:
The Bioinstrumentation Laboratory belongs to the Centre for Biomedical Technology (CTB) of the Technical University of Madrid and its main objective is to provide the scientific community with devices and techniques for the characterization of micro and nanostructures and consequently finding their best biomedical applications. Hyperthermia (greek word for “overheating”) is defined as the phenomenon that occurs when a body is exposed to an energy generating source that can produce a rise in temperature (42-45ºC) for a given time [1]. Specifically, the aim of the hyperthermia methods used in The Bioinstrumentation Laboratory is the development of thermal therapies, some of these using different kinds of nanoparticles, to kill cancer cells and reduce the damage on healthy tissues. The optical hyperthermia is based on noble metal nanoparticles and laser irradiation. This kind of nanoparticles has an immense potential associated to the development of therapies for cancer on account of their Surface Plasmon Resonance (SPR) enhanced light scattering and absorption. In a short period of time, the absorbed light is converted into localized heat, so we can take advantage of these characteristics to heat up tumor cells in order to obtain the cellular death [2]. In this case, the laboratory has an optical hyperthermia device based on a continuous wave laser used to kill glioblastoma cell lines (1321N1) in the presence of gold nanorods (Figure 1a). The wavelength of the laser light is 808 nm because the penetration of the light in the tissue is deeper in the Near Infrared Region. The first optical hyperthermia results show that the laser irradiation produces cellular death in the experimental samples of glioblastoma cell lines using gold nanorods but is not able to decrease the cellular viability of cancer cells in samples without the suitable nanorods (Figure 1b) [3]. The generation of magnetic hyperthermia is performed through changes of the magnetic induction in magnetic nanoparticles (MNPs) that are embedded in viscous medium. The Figure 2 shows a schematic design of the AC induction hyperthermia device in magnetic fluids. The equipment has been manufactured at The Bioinstrumentation Laboratory. The first block implies two steps: the signal selection with frequency manipulation option from 9 KHz to 2MHz, and a linear output up to 1500W. The second block is where magnetic field is generated ( 5mm, 10 turns). Finally, the third block is a software control where the user can establish initial parameters, and also shows the temperature response of MNPs due to the magnetic field applied [4-8]. The Bioinstrumentation Laboratory in collaboration with the Mexican company MRI-DT have recently implemented a new research line on Nuclear Magnetic Resonance Hyperthermia, which is sustained on the patent US 7,423,429B2 owned by this company. This investigation is based on the use of clinical MRI equipment not only for diagnosis but for therapy [9]. This idea consists of two main facts: Magnetic Resonance Imaging can cause focal heating [10], and the differentiation in resonant frequency between healthy and cancer cells [11]. To produce only heating in cancer cells when the whole body is irradiated, it is necessary to determine the specific resonant frequency of the target, using the information contained in the spectra of the area of interest. Then, special RF pulse sequence is applied to produce fast excitation and relaxation mechanism that generates temperature increase of the tumor, causing cellular death or metabolism malfunction that stops cellular division
Resumo:
This paper focuses on hand biometrics applied to images acquired from a mobile device. The system offers the possibility of identifying individuals based on features extracted from hand pictures obtained with a low-quality camera embedded on a mobile device. Furthermore, the acquisitions have been carried out regardless illumination control, orientation, distance to camera, and similar aspects. In addition, the whole system has been tested with an owned database. Finally, the results obtained (6.0% ± 0.2) and the algorithm structure are both promising in relation to a posterior mobile implementation
Resumo:
In this paper we study, through a concrete case, the feasibility of using a high-level, general-purpose logic language in the design and implementation of applications targeting wearable computers. The case study is a "sound spatializer" which, given real-time signáis for monaural audio and heading, generates stereo sound which appears to come from a position in space. The use of advanced compile-time transformations and optimizations made it possible to execute code written in a clear style without efñciency or architectural concerns on the target device, while meeting strict existing time and memory constraints. The final executable compares favorably with a similar implementation written in C. We believe that this case is representative of a wider class of common pervasive computing applications, and that the techniques we show here can be put to good use in a range of scenarios. This points to the possibility of applying high-level languages, with their associated flexibility, conciseness, ability to be automatically parallelized, sophisticated compile-time tools for analysis and verification, etc., to the embedded systems field without paying an unnecessary performance penalty.
Resumo:
In this paper we present the design and implementation of a wearable application in Prolog. The application program is a "sound spatializer." Given an audio signal and real time data from a head-mounted compass, a signal is generated for stereo headphones that will appear to come from a position in space. We describe high-level and low-level optimizations and transformations that have been applied in order to fit this application on the wearable device. The end application operates comfortably in real-time on a wearable computer, and has a memory foot print that remains constant over time enabling it to run on continuous audio streams. Comparison with a version hand-written in C shows that the C version is no more than 20-40% faster; a small price to pay for a high level description.
Resumo:
Abstract Due to recent scientific and technological advances in information sys¬tems, it is now possible to perform almost every application on a mobile device. The need to make sense of such devices more intelligent opens an opportunity to design data mining algorithm that are able to autonomous execute in local devices to provide the device with knowledge. The problem behind autonomous mining deals with the proper configuration of the algorithm to produce the most appropriate results. Contextual information together with resource information of the device have a strong impact on both the feasibility of a particu¬lar execution and on the production of the proper patterns. On the other hand, performance of the algorithm expressed in terms of efficacy and efficiency highly depends on the features of the dataset to be analyzed together with values of the parameters of a particular implementation of an algorithm. However, few existing approaches deal with autonomous configuration of data mining algorithms and in any case they do not deal with contextual or resources information. Both issues are of particular significance, in particular for social net¬works application. In fact, the widespread use of social networks and consequently the amount of information shared have made the need of modeling context in social application a priority. Also the resource consumption has a crucial role in such platforms as the users are using social networks mainly on their mobile devices. This PhD thesis addresses the aforementioned open issues, focusing on i) Analyzing the behavior of algorithms, ii) mapping contextual and resources information to find the most appropriate configuration iii) applying the model for the case of a social recommender. Four main contributions are presented: - The EE-Model: is able to predict the behavior of a data mining algorithm in terms of resource consumed and accuracy of the mining model it will obtain. - The SC-Mapper: maps a situation defined by the context and resource state to a data mining configuration. - SOMAR: is a social activity (event and informal ongoings) recommender for mobile devices. - D-SOMAR: is an evolution of SOMAR which incorporates the configurator in order to provide updated recommendations. Finally, the experimental validation of the proposed contributions using synthetic and real datasets allows us to achieve the objectives and answer the research questions proposed for this dissertation.
Resumo:
Archaeopteryx has played a central role in the debates on the origins of avian (and dinosaurian) flight, even though as a flier it probably represents a relatively late stage in the beginnings of fl ight. We report on aerodynamic tests using a life-sized model of Archaeopteryx performing in a low turbulence wind tunnel. Our results indicate that tail deflection significantly decreased take-off velocity and power consumption, and that the first manual digit could have functioned as the structural precursor of the alula. Such results demonstrate that Archaeopteryx had already evolved high-lift devices, which are functional analogues of those present in today's birds.
Resumo:
We report on the electrical transport properties of all-oxide La0.7Ca0.3MnO3/SrTiO3:Nb heterojunctions with lateral size of just a few micrometers. The use of lithography techniques to pattern manganite pillars ensures perpendicular transport and allows exploration of the microscopic conduction mechanism through the interface. From the analysis of the current-voltage characteristics in the temperature range 20-280 K we find a Schottky-like behavior that can be described by a mechanism of thermally assisted tunneling if a temperature-dependent value of the dielectric permittivity of SrTiO3:Nb (NSTO) is considered.We determine the Schottky energy barrier at the interface, qVB = 1.10 ± 0.02 eV, which is found to be temperature independent, and a value of ? = 17 ± 2 meV for the energy of the Fermi level in NSTO with respect to the bottom of its conduction band.
Resumo:
The utilisation of thin film technology to develop film bulk acoustic resonators (FBARs) and solidly mounted resonators (SMRs), offers great potential to outperform the sensitivity and minimum detection limit of gravimetric sensors. Up to now, the choice between FBARs and SMRs depends primarily on the users' ability to design and fabricate Bragg reflectors and/or membranes, because neither of these two types of resonators has been demonstrated to be superior to the other. In the work reported here, it is shown that identically designed FBARs and SMRs resonating at the same frequency exhibit different responsitivities, Rm, to mass loadings, being the FBARs more responsive than the SMRs. For the specific device design and resonant frequency (~2 GHz) of the resonators presented, FBARs' mass responsitivity is ~20% greater than that of SMRs, and although this value should not be taken as universal for all possible device designs, it clearly indicates that FBAR devices should be favoured over SMRs in gravimetric sensing applications.