936 resultados para reliable narrator
Resumo:
Measurement of discrimination against 18O during dark respiration in plants is currently accepted as the only reliable method of estimating the partitioning of electrons between the cytochrome and alternative pathways. In this paper, we review the theory of the technique and its application to a gas-phase system. We extend it to include sampling effects and show that the isotope discrimination factor, D, is calculated as –dln(1 + δ)/dlnO*, where δ is isotopic composition of the substrate oxygen and O*=[O2]/[N2] in a closed chamber containing tissue respiring in the dark. It is not necessary to integrate the expression but, if the integrated form is used, the resultant regression should not be constrained through the origin. This is important since any error in D will have significant effects on the estimation of the flux of electrons through the two pathways.
Resumo:
Broadband technology has been introduced to the business community and the public as a fast and easy way of exploiting the Internet. The benefits of its use (fast reliable connections, always on) have been widely realised and broadband diffusion is one of the items at the top of the agenda for technology related polices of governments worldwide. Broadband diffusion and capacity development are central to debates in many countries concerning the role of the government in developing efficient broadband policies particularly in terms of the usage of public money. In this paper we examine the impact of government polices to broadband adoption in the case of the UK government, a country that is striving to have the most extensive and competitive broadband market in the G7 by 2005. We analyse specific institutional actions related to IT diffusion as pursued by the government with the view to identify best practices in government intervention. We believe that are our analysis is useful for broadband strategies in particular and technology in general when applied elsewhere.
Resumo:
For robots operating in outdoor environments, a number of factors, including weather, time of day, rough terrain, high speeds, and hardware limitations, make performing vision-based simultaneous localization and mapping with current techniques infeasible due to factors such as image blur and/or underexposure, especially on smaller platforms and low-cost hardware. In this paper, we present novel visual place-recognition and odometry techniques that address the challenges posed by low lighting, perceptual change, and low-cost cameras. Our primary contribution is a novel two-step algorithm that combines fast low-resolution whole image matching with a higher-resolution patch-verification step, as well as image saliency methods that simultaneously improve performance and decrease computing time. The algorithms are demonstrated using consumer cameras mounted on a small vehicle in a mixed urban and vegetated environment and a car traversing highway and suburban streets, at different times of day and night and in various weather conditions. The algorithms achieve reliable mapping over the course of a day, both when incrementally incorporating new visual scenes from different times of day into an existing map, and when using a static map comprising visual scenes captured at only one point in time. Using the two-step place-recognition process, we demonstrate for the first time single-image, error-free place recognition at recall rates above 50% across a day-night dataset without prior training or utilization of image sequences. This place-recognition performance enables topologically correct mapping across day-night cycles.
Resumo:
Sparse optical flow algorithms, such as the Lucas-Kanade approach, provide more robustness to noise than dense optical flow algorithms and are the preferred approach in many scenarios. Sparse optical flow algorithms estimate the displacement for a selected number of pixels in the image. These pixels can be chosen randomly. However, pixels in regions with more variance between the neighbours will produce more reliable displacement estimates. The selected pixel locations should therefore be chosen wisely. In this study, the suitability of Harris corners, Shi-Tomasi's “Good features to track", SIFT and SURF interest point extractors, Canny edges, and random pixel selection for the purpose of frame-by-frame tracking using a pyramidical Lucas-Kanade algorithm is investigated. The evaluation considers the important factors of processing time, feature count, and feature trackability in indoor and outdoor scenarios using ground vehicles and unmanned aerial vehicles, and for the purpose of visual odometry estimation.
Resumo:
Determining the condition as well as the remaining life of an insulation system is essential for the reliable operation of large oil-filled power transformers. Frequency-domain spectroscopy (FDS) is one of the diagnostic techniques used to identify the dielectric status of a transformer. Currently, this technique can only be implemented on a de-energized transformer. This paper presents an initial investigation into a novel online monitoring method based on FDS dielectric measurements for transformers. The proposed technique specifically aims to address the real operational constraints of online testing. This is achieved by designing an online testing model extending the basic “extended Debye” linear dielectric model and taking unique noise issues only experienced during online measurements into account via simulations. Approaches to signal denoising and potential problems expected to be encountered during online measurements will also be discussed. Using fixed-frequency sinusoidal excitation waveforms will result in a long measurement times. The use of alternatives such as a chirp has been investigated using simulations. The results presented in the paper predict that reliable measurements should be possible during online testing.
Resumo:
Purpose: To determine i) the reliability of two-dimensional ultrasonography for the assessment of biceps femoris long head (BFlh) architectural characteristics; ii) if limbs with a history of strain injury in the BFlh display different architecture and eccentric strength compared to uninjured limbs. Methods: This case-control study (control [n=20], injured group [n=16], males) assessed the BFlh architecture at rest and during graded isometric contractions using two-dimensional ultrasonography. The control group were assessed three times (>24hrs apart) to determine reliability. Previously injured individuals were evaluated once. Results The assessment of BFlh architecture was highly reliable (intraclass correlations >0.90). Fascicle length (p<0.001; d range: 0.67 to 1.34) and fascicle length relative to muscle thickness (p<0.001; d range: 0.58 to 0.85) of the previously injured BFlh were significantly less than the contralateral uninjured BFlh at all intensities. Pennation angle of the previously injured BFlh was significantly greater (p<0.001; d range: 0.62 to 0.88) than the contralateral uninjured BFlh at all intensities. Eccentric strength in the previously injured limb was significantly lower than the contralateral limb (-15.4%; -52.5N; 95% CI=-28.45 to -76.23; p<0.001, d=0.56). Conclusion These data indicate that two-dimensional ultrasonography is reliable for assessing BFlh architecture at rest and during graded isometric contractions. Fascicle length, fascicle length relative to muscle thickness and pennation angle are significantly different in previously injured BFlh compared to an uninjured contralateral BFlh. Eccentric strength of the previously injured limb is also significantly lower than the uninjured contralateral limb. These findings have implications for rehabilitation and injury prevention practices which should consider altered architectural characteristics.
Learned stochastic mobility prediction for planning with control uncertainty on unstructured terrain
Resumo:
Motion planning for planetary rovers must consider control uncertainty in order to maintain the safety of the platform during navigation. Modelling such control uncertainty is difficult due to the complex interaction between the platform and its environment. In this paper, we propose a motion planning approach whereby the outcome of control actions is learned from experience and represented statistically using a Gaussian process regression model. This mobility prediction model is trained using sample executions of motion primitives on representative terrain, and predicts the future outcome of control actions on similar terrain. Using Gaussian process regression allows us to exploit its inherent measure of prediction uncertainty in planning. We integrate mobility prediction into a Markov decision process framework and use dynamic programming to construct a control policy for navigation to a goal region in a terrain map built using an on-board depth sensor. We consider both rigid terrain, consisting of uneven ground, small rocks, and non-traversable rocks, and also deformable terrain. We introduce two methods for training the mobility prediction model from either proprioceptive or exteroceptive observations, and report results from nearly 300 experimental trials using a planetary rover platform in a Mars-analogue environment. Our results validate the approach and demonstrate the value of planning under uncertainty for safe and reliable navigation.
Resumo:
Work zone safety studies have traditionally relied on historical crash records—an approach which is reactive in nature as it requires crashes to accumulate first before taking any preventive actions. However, detailed and accurate data on work zone crashes are often not available, as is the case for Australian road work zones. The lack of reliable safety records and the reactive nature of the crash-based safety analysis approach motivated this research to seek alternative and proactive measures of safety. Various surrogate measures of safety have been developed in the traffic safety literature including time to collision, time to accident, gap time, post encroachment time, required deceleration rate, proportion of stopping distances, lateral distance to departure, and time to departure. These measures express how close road-user(s) are from a potential crash by analysing their movement trajectories. A review of this fast-growing literature is presented in this paper from the viewpoint of applying the measures to untangle work zone safety issues. The review revealed that the use of the surrogate measures is very limited for analysing work zone safety, although numerous studies have used these measures for analysing safety in other parts of the road network, such as intersections and motorway ramps. There exist great opportunities for adopting this proactive safety assessment approach to transform work zone safety for both roadworkers and motorists.
Resumo:
Aim Evaluation or assessment of competence is an important step to ensure the safety and efficacy of health professionals, including dietitians. Most competency-based assessment studies are focussed on valid and reliable methods of assessment for the preparation of entry-level dietitians, few papers have explored student dietitians’ perceptions of these evaluations. This study aimed to explore the perceptions of recent graduates from accredited nutrition and dietetics training programs in Australia. It also aimed to establish the relevance of competency-based assessment to adequately prepare them for entry-level work roles. Methods A purposive sample of newly-graduated dietitians with a range of assessment experiences and varied employment areas was recruited. A qualitative approach, using in-depth interviews with 13 graduates, with differing assessment experiences was undertaken. Graduates were asked to reflect upon their competency-based assessment experiences whilst a student. Data was thematically analysed by multiple authors. Results Four themes emerged from the data analysis: (i) Transparency and consistency are critical elements of work-based competency assessment. (ii) Students are willing to take greater responsibility in their assessment process. (iii) Work-based competency assessment prepares students for employment. (iv) The relationship between students and their assessors can impact on the student experience and their assessment performance. Conclusions Understanding this unique perspective of students can improve evaluation of future health professionals and assist in designing valid competency-based assessment approaches.
Resumo:
Funded by an Australian Research Council (ARC) Linkage grant over four years (2009–13), the Major Infrastructure Procurement project sought to find more effective and efficient ways of procuring and delivering the nation’s social and economic infrastructure by investigating constraints relating to construction capacity, competition, and finance in new public sector major infrastructure.1 The research team comprised researchers in construction economics and finance from Queensland University of Technology (QUT), Griffith University (GU), The University of Hong Kong (UHK), and The University of Newcastle (UoN). Project partners included state government departments and agencies responsible for infrastructure procurement and delivery from all Australian mainland states, and private sector companies and peak bodies in the infrastructure sector (see “Introduction” for complete list). There are a number of major outcomes from this research project. The first of these is a scientifically developed decisionmaking model for procurement of infrastructure that deploys a novel and state-of-the-art integration of dominant microeconomic theory (including theories developed by two Nobel Prize winners). The model has been established through empirical testing and substantial experiential evidence as a valid and reliable guide to configuring procurement of new major and mega infrastructure projects in pursuance of superior Valuefor- Money (VfM). The model specifically addresses issues of project size, bundling of contracts, and exchange relationships. In so doing, the model determines the suitability of adopting a Public-Private Partnership (PPP) mode.
Resumo:
The ‘Centro case’ confirmed that each individual director is responsible for financial governance and must be able to ‘read and understand’ financial statements. Despite the centrality of director financial literacy to directors duties, practitioner and academic literature have failed to clearly define or provide evidence-based reliable measures of director financial literacy. This paper seeks to address this weakness by presenting the initial results of a Delphi study on unpacking the conceptualisation of director financial literacy. We have found that director financial literacy involves more than reading and understanding financial statements. Rather, it encompasses capabilities in applying accounting concepts to the analysis and evaluation of financial statements. As such director financial literacy may be more accurately described as ‘director accounting literacy’.
Resumo:
A recurring feature of modern practice is the stress placed on project professionals, with both debilitating effects on the people concerned and indirectly affecting project success. Cost estimation, for example, is an essential task for successful project management involving a high level of uncertainty. It is not surprising, therefore, that young cost estimators especially can become stressful at work due to a lack of experience and the heavy responsibilities involved. However, the concept of work stress and the associated underlying dimensions has not been clearly defined in extant studies in the construction management field. To redress this situation, an updated psychology perceived stress questionnaire (PSQ) , first developed by Levenstein et al (1993) and revised by Fliege et al (2005), is used to explore the dimensions of work stress with empirical evidence from the construction industry in China. With 145 reliable responses from young (less than 5 years’ experience) Chinese cost estimators, this study explores the internal dimensions of work stress, identifying four dimensions of tension, demands, lack of joy and worries. It is suggested that this four-dimensional structure may also be applicable in a more general context.
Resumo:
Hypothesis Melatonin synthesis, which is directly controlled by the central circadian pacemaker indicates the circadian phase better than rectal temperature. Methods: Thirty four men (16-32 years, 7 morning, 13 neither, 14 evening types) performed a constant routine (24-26-hr bedrest, < 30 lux, 18-20°C, hourly isocaloric diet). Salivary melatonin level was determined hourly and rectal temperature was continuously recorded. Results: The nadir of rectal temperature occurred 1.5 hr (P = 0.017), the onset of melatonin synthesis 3 hr earlier (P < 0.0001) in morning than in evening types. Morningness was not related to the quantitative but significantly to the temporal parameters, closer to those of melatonin than of rectal temperature. Conclusions: The melatonin onset is a more reliable indicator of the diurnal type than the nadir of rectal temperature. As morningness has been associated with intolerance to shiftwork, melatonin profiling provides a suitable basis for the establishment of directed preventive measures.
Resumo:
Occupational standards concerning the allowable concentrations of chemical compounds in the ambient air of workplaces have been established in several countries at national levels. With the integration of the European Union, a need exists for establishing harmonized Occupational Exposure Limits. For analytical developments, it is apparent that methods for speciation or fractionation of carcinogenic metal compounds will be of increasing practical importance for standard setting. Criteria of applicability under field conditions, cost-effectiveness, and robustness are practical driving forces for new developments. When the European Union issued a list of 62 chemical substances with Occupational Exposure Limits in 2000, 25 substances received a 'skin' notation. The latter indicates that toxicologically significant amounts may be taken up via the skin. Similar notations exist on national levels. For such substances, monitoring concentrations in ambient air will not be sufficient; biological monitoring strategies will gain further importance in the medical surveillance of workers who are exposed to such compounds. Proceedings in establishing legal frameworks for a biological monitoring of chemical exposures within Europe are paralleled by scientific advances in this field. A new aspect is the possibility of a differential adduct monitoring, using blood proteins of different half-life or lifespan. This technique allows differentiation between long-term mean exposure to reactive chemicals and short-term episodes, for example, by accidental overexposure. For further analytical developments, the following issues have been addressed as being particularly important: New dose monitoring strategies, sensitive and reliable methods for detection of DNA adducts, cytogenetic parameters in biological monitoring, methods to monitor exposure to sensitizing chemicals, and parameters for individual susceptibilities to chemical toxicants.
Resumo:
Various forms of hydrogenated graphene have been produced to date by several groups, while the synthesis of pure graphane has not been achieved yet. The study of the interface between graphane, in all its possible hydrogenation configurations, and catalyst metal surfaces can be pivotal to assess the feasibility of direct CVD growth methods for this material. We investigated the adhesion of graphane to a Cu(111) surface by adopting the vdW-DF2-C09 exchange-correlation functional, which is able to describe dispersion forces. The results are further compared with the PBE and the LDA exchange-correlation functionals. We calculated the most stable geometrical configurations of the slab/graphane interface and evaluated how graphane's geometrical parameters are modified. We show that dispersion forces play an important role in the slab/graphane adhesion. Band structure calculations demonstrated that in the presence of the interaction with copper, the band gap of graphane is not only preserved, but also enlarged, and this increase can be attributed to the electronic charge accumulated at the interface. We calculated a substantial energy barrier at the interface, suggesting that CVD graphane films might act as reliable and stable insulating thin coatings, or also be used to form compound layers in conjunction with metals and semiconductors.