990 resultados para reactor kinetics
Resumo:
The kinetics of the photomineralisation of 4-chlorophenol, 4-CP, by oxygen, sensitized by TiO2 as a function of incident light intensity are described. Degussa P25 TiO2 in the form of either a thin film or a dispersion is used as the photocatalyst. With a TiO2 dispersion the initial rate of photomineralisation, R-i, depends upon I-0.64, implying that electron-hole recombination is the dominant process with respect to photogenerated holes (where R-i is expected proportional to I-0.5), but that the light intensities used spanned both the high (R-i expected proportional to I-0.5) and low (R-i expected proportional to I) intensity regimes. With a TiO2 film R-i is proportional to I indicating that the photocatalytically active particles of the TiO2 film are shielded in some way and so operate under low intensity conditions. Most significantly, it was also found that the apparent value of the Langmuir adsorption coefficient, K4-CP, as determined from the kinetic data, was not independent of I for either a TiO2, film or dispersion photocatalyst. Rather K4-CP increased with decreasing light intensity. A possible mechanism is suggested as a rationale for the observed light intensity effects reported.
Resumo:
The semiconductor photocatalyst, platinised titanium dioxide, Pt/TiO2, is used to promote the destruction of bromate ions to bromide and oxygen by 254 nm ultraviolet light. The kinetics of bromate removal are first order with respect to [BrO3-] and are inhibited, although not completely, by competitive adsorption by other anions, including bromide and sulfate ions. The Pt/TiO2 can be used not only as a powder dispersion, but also as a thin film in a flow reactor for the destruction of bromate ions. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
The initial rate of oxidation of octan-2-ol and other secondary alcohols to their ketones with NaBrO3, mediated by RuO4 in an aqueous-CCl4 biphasic system, is greater with ultrasonic irradiation than by stirring alone. Under ultrasonic irradiation the initial rate of oxidation of octan-2-ol increases with increasing % duty cycle, [RuO4] and [NaBrO3]. The kinetics of alcohol oxidation appear to be closely linked with the oxidative dissolution of RuO2 to RuO4 by NaBrO3. The observed enhancement in rate with ultrasonic irradiation appear to be association, at least in part, with the increase in interfacial surface area via the formation of an emulsion of aqueous microdroplets containing NaBrO3 in the CCl4 layer containing the non-water-soluble secondary alcohol.
Resumo:
Ultrasound promotes the reduction of hexacyanoferrate(III) by thiosulfate ions mediated by RuO2 . xH(2)O under diffusion-controlled conditions. There is a strong correlation between the measured first-order rate constant and the absorbance of the dispersion, which, in turn, is closely related to the specific surface area of the catalyst. The enhancement in rate with ultrasonic irradiation appears to be largely associated with the dispersive action of the ultrasound on the aggregated particles of RuO2 . xH(2)O. The rate of reaction increases with increasing %duty cycle and ultrasonic intensity. The measured overall activation energies for the reaction with and without ultrasound, i.e. 18 +/- 1 and 20 +/- 1 kJ mol(-1), respectively, are very similar to those expected for a diffusion-controlled reaction. The homogeneous reaction is not promoted by ultrasound.
Resumo:
The kinetics of reductive dissolution of NaBiO3, by Mn-II and Ce-III ions are studied as a function of [Mn-II] or [Ce-III], [Bi-III], [H+] and temperature. They fit a simple inverse-cubic rate law and can be readily interpreted using a mechanism in which the rate-determining step is the reaction between an adsorbed reducing species (i.e. a Mn-II or Ce-III ion) and its associated surface site; protonation of the surface site promotes the rate of reaction. The rate of dissolution decreases with increasing initial concentration of Bi-III ions owing to competitive inhibition by the latter species. A kinetic model, based on this mechanism, is applied and provides a quantitative description of the observed kinetics.
Resumo:
The kinetics of reduction of hexacyanoferrate(III) by excess thiosulfate, mediated by RuO2.xH2O, are investigated. At high concentrations of S2O32- (0.1 mol dm-3) the kinetics of Fe(CN)63- reduction are first order with respect to [Fe(CN)63-] and [RuO2.xH2O] and independent of [Fe(CN)64-], [S2O32-] and [S4O62-]. At relatively low concentrations Of S2O32- (0.01 mol dm-3) and in the presence of appreciable concentrations of Fe(CN)64- and S4O62- (0.01 mol dm-3) the kinetics depend directly upon [Fe(CN)63-] and [RuO2.xH2O] and inversely upon [Fe(CN)64-]. Both sets of kinetics can be rationalised using an electrochemical model of redox catalysts in which a reversible reduction reaction [Fe(CN)63- + e- --> Fe(CN)64-] is coupled to an irreversible oxidation reaction (s2O32- - e- --> 1/2S4O62-), by a dispersion of RuO2.xH2O microelectrodes. At high concentrations Of S2O32- this model predicts that the kinetics of Fe(CN)63- reduction are controlled by the rate of diffusion of the Fe(CN)63- ions to the RuO2.xH2O particles. The kinetics observed at low concentrations of S2O32- are predicted by the electrochemical model, assuming that the Tafel slope for the oxidation Of S2O32- to S4O62- on the RuO2.xH2O particles is 56.4 mV decade-1.
Resumo:
The kinetics of photoreduction of methyl orange by ascorbic acid sensitized by colloidal CdS has been studied. Different experimental factors such a [O2], pH and temperature, as well as the presence of potential competitive species like MV2+ and Cd2+ have been taken as variables in this study. O2 and Cd2+ clearly inhibit the photoreduction but the presence of MV2+ increases the reaction rate. The pH greatly influences the kinetics and temperature (T) has little effect. The results are interpreted using a reaction scheme proposed in earlier papers where dispersions of crystalline CdS were used as the photocatalyst and EDTA as the hole scavenger.
Resumo:
The kinetics of photomineralization of 4-chlorophenol (4-CP) sensitized by Degussa P25 TiO2 in O2-saturated solution is studied as a function of the following different experimental parameters: pH, [TiO2], percentage O2 [O2], [4-CP], T, I, lambda and [KNO3]. At pH 2 and T=30-degrees-C the initial relative rate of CO2 photogeneration R(CO2) conforms to a Langmuir-Hinshelwood-type kinetic scheme and the relationship between R(CO2) and the various experimental parameters may be summarized as follows: R(CO2) = gammaK(O2)[O2](I(a))(theta)K(4-CP]0/(1 + K(O2])(1 + K(4-CP)[4-CP]0) where gamma is a proportionality constant, K(O2) = 0.044 +/- 0.005[O2]-1, theta = 0.74 +/- 0.05 and K(4-CP) = (29 +/- 3) x 10(3) dm3 mol-1. The overall activation energy for this photosystem was determined as 16 +/- 2 kJ mol-1. This work forms part of an overall characterization study in which it is proposed that the 4-CP-TiO2-O2 photosystem is adopted as a standard test system for incorporation into all future semiconductor-sensitized photomineralization studies in order to facilitate comparisons between the results of the different studies.
Resumo:
The kinetics of oxidative dissolution of RuO2 .xH2O to RuO4 by Ce(iv) ions are studied. Under conditions of a low [Ce(iv)] : [RuO2 .xH2O] ratio (e.g. 0.35 : 1) and a high background concentration of Ce(III) ions (which impede dissolution) the initial reduction of Ce(iv) ions is due to charging of the RuO2 .xH2O microelectrode particles. The initial rate of charging depends directly upon [RuO2 .xH2O] and has an activation energy of 25 +/- 5 kJ mol-1 Under conditions of a high [Ce(iv] : [RuO2 .xH2O] (e.g. 9 : 1) and a low background [Ce(III] the reduction of Ce(iv) ions is almost totally associated with the dissolution of RuO2 .xH2O to RuO4, i.e. not charging. The kinetics of dissolution obey an electrochemical model in which the reduction of Ce(iv) ions and the oxidation of RuO2 .xH2O to RuO4 are assumed to be highly reversible and irreversible processes, respectively, mediated by dissolving the microelectrode particles of RuO2 .xH2O. Assuming this electrochemical model, from an analysis of the kinetics of dissolution the activation energy for this process was estimated to be 39 +/- 5 kJ mol-1 and the Tafel slope for RuO2 .xH2O corrosion was calculated to be 15 mV per decade. The mechanistic implications of these results are discussed.